![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl21anc | GIF version |
Description: Syllogism combined with contraction. (Contributed by Jeff Hankins, 1-Aug-2009.) |
Ref | Expression |
---|---|
sylXanc.1 | ⊢ (𝜑 → 𝜓) |
sylXanc.2 | ⊢ (𝜑 → 𝜒) |
sylXanc.3 | ⊢ (𝜑 → 𝜃) |
syl21anc.4 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl21anc | ⊢ (𝜑 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | sylXanc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | sylXanc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 1, 2, 3 | jca31 305 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
5 | syl21anc.4 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
6 | 4, 5 | syl 14 | 1 ⊢ (𝜑 → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia3 107 |
This theorem is referenced by: issod 4201 brcogw 4668 funprg 5131 funtpg 5132 fnunsn 5188 ftpg 5558 fsnunf 5574 isotr 5671 off 5948 caofrss 5960 tfr1onlembxssdm 6194 tfrcllembxssdm 6207 pmresg 6524 ac6sfi 6745 tridc 6746 fidcenumlemrks 6793 sbthlemi8 6804 casefun 6922 caseinj 6926 djufun 6941 djuinj 6943 mulclpi 7084 archnqq 7173 addlocprlemlt 7287 addlocprlemeq 7289 addlocprlemgt 7290 mullocprlem 7326 apreim 8283 ltrec1 8556 divge0d 9423 fseq1p1m1 9767 q2submod 10051 seq3caopr2 10148 seq3distr 10179 facavg 10385 shftfibg 10485 sqrtdiv 10706 sqrtdivd 10832 mulcn2 10973 demoivreALT 11330 dvdslegcd 11501 gcdnncl 11504 qredeu 11624 rpdvds 11626 rpexp 11677 oddpwdclemodd 11695 divnumden 11719 divdenle 11720 phimullem 11746 setsfun 11837 setsfun0 11838 strleund 11890 comet 12488 fsumcncntop 12542 mulcncf 12577 trilpo 12928 |
Copyright terms: Public domain | W3C validator |