Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl21anc | GIF version |
Description: Syllogism combined with contraction. (Contributed by Jeff Hankins, 1-Aug-2009.) |
Ref | Expression |
---|---|
sylXanc.1 | ⊢ (𝜑 → 𝜓) |
sylXanc.2 | ⊢ (𝜑 → 𝜒) |
sylXanc.3 | ⊢ (𝜑 → 𝜃) |
syl21anc.4 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl21anc | ⊢ (𝜑 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | sylXanc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | sylXanc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 1, 2, 3 | jca31 307 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
5 | syl21anc.4 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
6 | 4, 5 | syl 14 | 1 ⊢ (𝜑 → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: issod 4297 brcogw 4773 funprg 5238 funtpg 5239 fnunsn 5295 ftpg 5669 fsnunf 5685 isotr 5784 off 6062 caofrss 6074 tfr1onlembxssdm 6311 tfrcllembxssdm 6324 pmresg 6642 ac6sfi 6864 tridc 6865 fidcenumlemrks 6918 sbthlemi8 6929 casefun 7050 caseinj 7054 djufun 7069 djuinj 7071 mulclpi 7269 archnqq 7358 addlocprlemlt 7472 addlocprlemeq 7474 addlocprlemgt 7475 mullocprlem 7511 apreim 8501 subrecap 8735 ltrec1 8783 divge0d 9673 fseq1p1m1 10029 q2submod 10320 seq3caopr2 10417 seq3distr 10448 facavg 10659 shftfibg 10762 sqrtdiv 10984 sqrtdivd 11110 mulcn2 11253 demoivreALT 11714 dvdslegcd 11897 gcdnncl 11900 qredeu 12029 rpdvds 12031 rpexp 12085 oddpwdclemodd 12104 divnumden 12128 divdenle 12129 phimullem 12157 phisum 12172 pythagtriplem4 12200 pythagtriplem8 12204 pythagtriplem9 12205 pcgcd1 12259 fldivp1 12278 pockthlem 12286 setsfun 12429 setsfun0 12430 strleund 12483 comet 13149 fsumcncntop 13206 mulcncf 13241 2sqlem8a 13608 2sqlem8 13609 trilpo 13932 neapmkv 13956 |
Copyright terms: Public domain | W3C validator |