ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemex GIF version

Theorem suplocexprlemex 7897
Description: Lemma for suplocexpr 7900. The putative supremum is a positive real. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
suplocexpr.b 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
Assertion
Ref Expression
suplocexprlemex (𝜑𝐵P)
Distinct variable groups:   𝑢,𝐴,𝑤,𝑧   𝑥,𝐴,𝑢,𝑦,𝑧   𝑤,𝐵   𝜑,𝑢,𝑤,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑢)

Proof of Theorem suplocexprlemex
Dummy variables 𝑞 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocexpr.b . . 3 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
2 suplocexpr.m . . . . . 6 (𝜑 → ∃𝑥 𝑥𝐴)
3 suplocexpr.ub . . . . . 6 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
4 suplocexpr.loc . . . . . 6 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
52, 3, 4suplocexprlemss 7890 . . . . 5 (𝜑𝐴P)
61suplocexprlem2b 7889 . . . . 5 (𝐴P → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
75, 6syl 14 . . . 4 (𝜑 → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
87opeq2d 3863 . . 3 (𝜑 → ⟨ (1st𝐴), (2nd𝐵)⟩ = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩)
91, 8eqtr4id 2281 . 2 (𝜑𝐵 = ⟨ (1st𝐴), (2nd𝐵)⟩)
10 suplocexprlemell 7888 . . . . . . . . 9 (𝑠 (1st𝐴) ↔ ∃𝑡𝐴 𝑠 ∈ (1st𝑡))
1110biimpi 120 . . . . . . . 8 (𝑠 (1st𝐴) → ∃𝑡𝐴 𝑠 ∈ (1st𝑡))
1211adantl 277 . . . . . . 7 ((𝜑𝑠 (1st𝐴)) → ∃𝑡𝐴 𝑠 ∈ (1st𝑡))
135ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑠 (1st𝐴)) ∧ (𝑡𝐴𝑠 ∈ (1st𝑡))) → 𝐴P)
14 simprl 529 . . . . . . . . . 10 (((𝜑𝑠 (1st𝐴)) ∧ (𝑡𝐴𝑠 ∈ (1st𝑡))) → 𝑡𝐴)
1513, 14sseldd 3225 . . . . . . . . 9 (((𝜑𝑠 (1st𝐴)) ∧ (𝑡𝐴𝑠 ∈ (1st𝑡))) → 𝑡P)
16 prop 7650 . . . . . . . . 9 (𝑡P → ⟨(1st𝑡), (2nd𝑡)⟩ ∈ P)
1715, 16syl 14 . . . . . . . 8 (((𝜑𝑠 (1st𝐴)) ∧ (𝑡𝐴𝑠 ∈ (1st𝑡))) → ⟨(1st𝑡), (2nd𝑡)⟩ ∈ P)
18 simprr 531 . . . . . . . 8 (((𝜑𝑠 (1st𝐴)) ∧ (𝑡𝐴𝑠 ∈ (1st𝑡))) → 𝑠 ∈ (1st𝑡))
19 elprnql 7656 . . . . . . . 8 ((⟨(1st𝑡), (2nd𝑡)⟩ ∈ P𝑠 ∈ (1st𝑡)) → 𝑠Q)
2017, 18, 19syl2anc 411 . . . . . . 7 (((𝜑𝑠 (1st𝐴)) ∧ (𝑡𝐴𝑠 ∈ (1st𝑡))) → 𝑠Q)
2112, 20rexlimddv 2653 . . . . . 6 ((𝜑𝑠 (1st𝐴)) → 𝑠Q)
2221ex 115 . . . . 5 (𝜑 → (𝑠 (1st𝐴) → 𝑠Q))
2322ssrdv 3230 . . . 4 (𝜑 (1st𝐴) ⊆ Q)
24 ssrab2 3309 . . . . 5 {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢} ⊆ Q
257, 24eqsstrdi 3276 . . . 4 (𝜑 → (2nd𝐵) ⊆ Q)
262, 3, 4suplocexprlemml 7891 . . . . 5 (𝜑 → ∃𝑞Q 𝑞 (1st𝐴))
272, 3, 4, 1suplocexprlemmu 7893 . . . . 5 (𝜑 → ∃𝑟Q 𝑟 ∈ (2nd𝐵))
2826, 27jca 306 . . . 4 (𝜑 → (∃𝑞Q 𝑞 (1st𝐴) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐵)))
2923, 25, 28jca31 309 . . 3 (𝜑 → (( (1st𝐴) ⊆ Q ∧ (2nd𝐵) ⊆ Q) ∧ (∃𝑞Q 𝑞 (1st𝐴) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐵))))
302, 3, 4suplocexprlemrl 7892 . . . . 5 (𝜑 → ∀𝑞Q (𝑞 (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))))
312, 3, 4, 1suplocexprlemru 7894 . . . . 5 (𝜑 → ∀𝑟Q (𝑟 ∈ (2nd𝐵) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))))
3230, 31jca 306 . . . 4 (𝜑 → (∀𝑞Q (𝑞 (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐵) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))))
332, 3, 4, 1suplocexprlemdisj 7895 . . . 4 (𝜑 → ∀𝑞Q ¬ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵)))
342, 3, 4, 1suplocexprlemloc 7896 . . . 4 (𝜑 → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 (1st𝐴) ∨ 𝑟 ∈ (2nd𝐵))))
3532, 33, 343jca 1201 . . 3 (𝜑 → ((∀𝑞Q (𝑞 (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐵) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))) ∧ ∀𝑞Q ¬ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵)) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 (1st𝐴) ∨ 𝑟 ∈ (2nd𝐵)))))
36 elinp 7649 . . 3 (⟨ (1st𝐴), (2nd𝐵)⟩ ∈ P ↔ ((( (1st𝐴) ⊆ Q ∧ (2nd𝐵) ⊆ Q) ∧ (∃𝑞Q 𝑞 (1st𝐴) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐵))) ∧ ((∀𝑞Q (𝑞 (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐵) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))) ∧ ∀𝑞Q ¬ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵)) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 (1st𝐴) ∨ 𝑟 ∈ (2nd𝐵))))))
3729, 35, 36sylanbrc 417 . 2 (𝜑 → ⟨ (1st𝐴), (2nd𝐵)⟩ ∈ P)
389, 37eqeltrd 2306 1 (𝜑𝐵P)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  w3a 1002   = wceq 1395  wex 1538  wcel 2200  wral 2508  wrex 2509  {crab 2512  wss 3197  cop 3669   cuni 3887   cint 3922   class class class wbr 4082  cima 4719  cfv 5314  1st c1st 6274  2nd c2nd 6275  Qcnq 7455   <Q cltq 7460  Pcnp 7466  <P cltp 7470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4377  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-1o 6552  df-2o 6553  df-oadd 6556  df-omul 6557  df-er 6670  df-ec 6672  df-qs 6676  df-ni 7479  df-pli 7480  df-mi 7481  df-lti 7482  df-plpq 7519  df-mpq 7520  df-enq 7522  df-nqqs 7523  df-plqqs 7524  df-mqqs 7525  df-1nqqs 7526  df-rq 7527  df-ltnqqs 7528  df-enq0 7599  df-nq0 7600  df-0nq0 7601  df-plq0 7602  df-mq0 7603  df-inp 7641  df-iltp 7645
This theorem is referenced by:  suplocexprlemub  7898  suplocexpr  7900
  Copyright terms: Public domain W3C validator