ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemex GIF version

Theorem suplocexprlemex 7784
Description: Lemma for suplocexpr 7787. The putative supremum is a positive real. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
suplocexpr.b 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
Assertion
Ref Expression
suplocexprlemex (𝜑𝐵P)
Distinct variable groups:   𝑢,𝐴,𝑤,𝑧   𝑥,𝐴,𝑢,𝑦,𝑧   𝑤,𝐵   𝜑,𝑢,𝑤,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑢)

Proof of Theorem suplocexprlemex
Dummy variables 𝑞 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocexpr.b . . 3 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
2 suplocexpr.m . . . . . 6 (𝜑 → ∃𝑥 𝑥𝐴)
3 suplocexpr.ub . . . . . 6 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
4 suplocexpr.loc . . . . . 6 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
52, 3, 4suplocexprlemss 7777 . . . . 5 (𝜑𝐴P)
61suplocexprlem2b 7776 . . . . 5 (𝐴P → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
75, 6syl 14 . . . 4 (𝜑 → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
87opeq2d 3812 . . 3 (𝜑 → ⟨ (1st𝐴), (2nd𝐵)⟩ = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩)
91, 8eqtr4id 2245 . 2 (𝜑𝐵 = ⟨ (1st𝐴), (2nd𝐵)⟩)
10 suplocexprlemell 7775 . . . . . . . . 9 (𝑠 (1st𝐴) ↔ ∃𝑡𝐴 𝑠 ∈ (1st𝑡))
1110biimpi 120 . . . . . . . 8 (𝑠 (1st𝐴) → ∃𝑡𝐴 𝑠 ∈ (1st𝑡))
1211adantl 277 . . . . . . 7 ((𝜑𝑠 (1st𝐴)) → ∃𝑡𝐴 𝑠 ∈ (1st𝑡))
135ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑠 (1st𝐴)) ∧ (𝑡𝐴𝑠 ∈ (1st𝑡))) → 𝐴P)
14 simprl 529 . . . . . . . . . 10 (((𝜑𝑠 (1st𝐴)) ∧ (𝑡𝐴𝑠 ∈ (1st𝑡))) → 𝑡𝐴)
1513, 14sseldd 3181 . . . . . . . . 9 (((𝜑𝑠 (1st𝐴)) ∧ (𝑡𝐴𝑠 ∈ (1st𝑡))) → 𝑡P)
16 prop 7537 . . . . . . . . 9 (𝑡P → ⟨(1st𝑡), (2nd𝑡)⟩ ∈ P)
1715, 16syl 14 . . . . . . . 8 (((𝜑𝑠 (1st𝐴)) ∧ (𝑡𝐴𝑠 ∈ (1st𝑡))) → ⟨(1st𝑡), (2nd𝑡)⟩ ∈ P)
18 simprr 531 . . . . . . . 8 (((𝜑𝑠 (1st𝐴)) ∧ (𝑡𝐴𝑠 ∈ (1st𝑡))) → 𝑠 ∈ (1st𝑡))
19 elprnql 7543 . . . . . . . 8 ((⟨(1st𝑡), (2nd𝑡)⟩ ∈ P𝑠 ∈ (1st𝑡)) → 𝑠Q)
2017, 18, 19syl2anc 411 . . . . . . 7 (((𝜑𝑠 (1st𝐴)) ∧ (𝑡𝐴𝑠 ∈ (1st𝑡))) → 𝑠Q)
2112, 20rexlimddv 2616 . . . . . 6 ((𝜑𝑠 (1st𝐴)) → 𝑠Q)
2221ex 115 . . . . 5 (𝜑 → (𝑠 (1st𝐴) → 𝑠Q))
2322ssrdv 3186 . . . 4 (𝜑 (1st𝐴) ⊆ Q)
24 ssrab2 3265 . . . . 5 {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢} ⊆ Q
257, 24eqsstrdi 3232 . . . 4 (𝜑 → (2nd𝐵) ⊆ Q)
262, 3, 4suplocexprlemml 7778 . . . . 5 (𝜑 → ∃𝑞Q 𝑞 (1st𝐴))
272, 3, 4, 1suplocexprlemmu 7780 . . . . 5 (𝜑 → ∃𝑟Q 𝑟 ∈ (2nd𝐵))
2826, 27jca 306 . . . 4 (𝜑 → (∃𝑞Q 𝑞 (1st𝐴) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐵)))
2923, 25, 28jca31 309 . . 3 (𝜑 → (( (1st𝐴) ⊆ Q ∧ (2nd𝐵) ⊆ Q) ∧ (∃𝑞Q 𝑞 (1st𝐴) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐵))))
302, 3, 4suplocexprlemrl 7779 . . . . 5 (𝜑 → ∀𝑞Q (𝑞 (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))))
312, 3, 4, 1suplocexprlemru 7781 . . . . 5 (𝜑 → ∀𝑟Q (𝑟 ∈ (2nd𝐵) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))))
3230, 31jca 306 . . . 4 (𝜑 → (∀𝑞Q (𝑞 (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐵) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))))
332, 3, 4, 1suplocexprlemdisj 7782 . . . 4 (𝜑 → ∀𝑞Q ¬ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵)))
342, 3, 4, 1suplocexprlemloc 7783 . . . 4 (𝜑 → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 (1st𝐴) ∨ 𝑟 ∈ (2nd𝐵))))
3532, 33, 343jca 1179 . . 3 (𝜑 → ((∀𝑞Q (𝑞 (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐵) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))) ∧ ∀𝑞Q ¬ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵)) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 (1st𝐴) ∨ 𝑟 ∈ (2nd𝐵)))))
36 elinp 7536 . . 3 (⟨ (1st𝐴), (2nd𝐵)⟩ ∈ P ↔ ((( (1st𝐴) ⊆ Q ∧ (2nd𝐵) ⊆ Q) ∧ (∃𝑞Q 𝑞 (1st𝐴) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐵))) ∧ ((∀𝑞Q (𝑞 (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐵) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))) ∧ ∀𝑞Q ¬ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵)) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 (1st𝐴) ∨ 𝑟 ∈ (2nd𝐵))))))
3729, 35, 36sylanbrc 417 . 2 (𝜑 → ⟨ (1st𝐴), (2nd𝐵)⟩ ∈ P)
389, 37eqeltrd 2270 1 (𝜑𝐵P)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wex 1503  wcel 2164  wral 2472  wrex 2473  {crab 2476  wss 3154  cop 3622   cuni 3836   cint 3871   class class class wbr 4030  cima 4663  cfv 5255  1st c1st 6193  2nd c2nd 6194  Qcnq 7342   <Q cltq 7347  Pcnp 7353  <P cltp 7357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-iltp 7532
This theorem is referenced by:  suplocexprlemub  7785  suplocexpr  7787
  Copyright terms: Public domain W3C validator