ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemex GIF version

Theorem suplocexprlemex 7806
Description: Lemma for suplocexpr 7809. The putative supremum is a positive real. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
suplocexpr.b 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
Assertion
Ref Expression
suplocexprlemex (𝜑𝐵P)
Distinct variable groups:   𝑢,𝐴,𝑤,𝑧   𝑥,𝐴,𝑢,𝑦,𝑧   𝑤,𝐵   𝜑,𝑢,𝑤,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑢)

Proof of Theorem suplocexprlemex
Dummy variables 𝑞 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocexpr.b . . 3 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
2 suplocexpr.m . . . . . 6 (𝜑 → ∃𝑥 𝑥𝐴)
3 suplocexpr.ub . . . . . 6 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
4 suplocexpr.loc . . . . . 6 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
52, 3, 4suplocexprlemss 7799 . . . . 5 (𝜑𝐴P)
61suplocexprlem2b 7798 . . . . 5 (𝐴P → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
75, 6syl 14 . . . 4 (𝜑 → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
87opeq2d 3816 . . 3 (𝜑 → ⟨ (1st𝐴), (2nd𝐵)⟩ = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩)
91, 8eqtr4id 2248 . 2 (𝜑𝐵 = ⟨ (1st𝐴), (2nd𝐵)⟩)
10 suplocexprlemell 7797 . . . . . . . . 9 (𝑠 (1st𝐴) ↔ ∃𝑡𝐴 𝑠 ∈ (1st𝑡))
1110biimpi 120 . . . . . . . 8 (𝑠 (1st𝐴) → ∃𝑡𝐴 𝑠 ∈ (1st𝑡))
1211adantl 277 . . . . . . 7 ((𝜑𝑠 (1st𝐴)) → ∃𝑡𝐴 𝑠 ∈ (1st𝑡))
135ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑠 (1st𝐴)) ∧ (𝑡𝐴𝑠 ∈ (1st𝑡))) → 𝐴P)
14 simprl 529 . . . . . . . . . 10 (((𝜑𝑠 (1st𝐴)) ∧ (𝑡𝐴𝑠 ∈ (1st𝑡))) → 𝑡𝐴)
1513, 14sseldd 3185 . . . . . . . . 9 (((𝜑𝑠 (1st𝐴)) ∧ (𝑡𝐴𝑠 ∈ (1st𝑡))) → 𝑡P)
16 prop 7559 . . . . . . . . 9 (𝑡P → ⟨(1st𝑡), (2nd𝑡)⟩ ∈ P)
1715, 16syl 14 . . . . . . . 8 (((𝜑𝑠 (1st𝐴)) ∧ (𝑡𝐴𝑠 ∈ (1st𝑡))) → ⟨(1st𝑡), (2nd𝑡)⟩ ∈ P)
18 simprr 531 . . . . . . . 8 (((𝜑𝑠 (1st𝐴)) ∧ (𝑡𝐴𝑠 ∈ (1st𝑡))) → 𝑠 ∈ (1st𝑡))
19 elprnql 7565 . . . . . . . 8 ((⟨(1st𝑡), (2nd𝑡)⟩ ∈ P𝑠 ∈ (1st𝑡)) → 𝑠Q)
2017, 18, 19syl2anc 411 . . . . . . 7 (((𝜑𝑠 (1st𝐴)) ∧ (𝑡𝐴𝑠 ∈ (1st𝑡))) → 𝑠Q)
2112, 20rexlimddv 2619 . . . . . 6 ((𝜑𝑠 (1st𝐴)) → 𝑠Q)
2221ex 115 . . . . 5 (𝜑 → (𝑠 (1st𝐴) → 𝑠Q))
2322ssrdv 3190 . . . 4 (𝜑 (1st𝐴) ⊆ Q)
24 ssrab2 3269 . . . . 5 {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢} ⊆ Q
257, 24eqsstrdi 3236 . . . 4 (𝜑 → (2nd𝐵) ⊆ Q)
262, 3, 4suplocexprlemml 7800 . . . . 5 (𝜑 → ∃𝑞Q 𝑞 (1st𝐴))
272, 3, 4, 1suplocexprlemmu 7802 . . . . 5 (𝜑 → ∃𝑟Q 𝑟 ∈ (2nd𝐵))
2826, 27jca 306 . . . 4 (𝜑 → (∃𝑞Q 𝑞 (1st𝐴) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐵)))
2923, 25, 28jca31 309 . . 3 (𝜑 → (( (1st𝐴) ⊆ Q ∧ (2nd𝐵) ⊆ Q) ∧ (∃𝑞Q 𝑞 (1st𝐴) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐵))))
302, 3, 4suplocexprlemrl 7801 . . . . 5 (𝜑 → ∀𝑞Q (𝑞 (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))))
312, 3, 4, 1suplocexprlemru 7803 . . . . 5 (𝜑 → ∀𝑟Q (𝑟 ∈ (2nd𝐵) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))))
3230, 31jca 306 . . . 4 (𝜑 → (∀𝑞Q (𝑞 (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐵) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))))
332, 3, 4, 1suplocexprlemdisj 7804 . . . 4 (𝜑 → ∀𝑞Q ¬ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵)))
342, 3, 4, 1suplocexprlemloc 7805 . . . 4 (𝜑 → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 (1st𝐴) ∨ 𝑟 ∈ (2nd𝐵))))
3532, 33, 343jca 1179 . . 3 (𝜑 → ((∀𝑞Q (𝑞 (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐵) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))) ∧ ∀𝑞Q ¬ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵)) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 (1st𝐴) ∨ 𝑟 ∈ (2nd𝐵)))))
36 elinp 7558 . . 3 (⟨ (1st𝐴), (2nd𝐵)⟩ ∈ P ↔ ((( (1st𝐴) ⊆ Q ∧ (2nd𝐵) ⊆ Q) ∧ (∃𝑞Q 𝑞 (1st𝐴) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐵))) ∧ ((∀𝑞Q (𝑞 (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐵) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))) ∧ ∀𝑞Q ¬ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵)) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 (1st𝐴) ∨ 𝑟 ∈ (2nd𝐵))))))
3729, 35, 36sylanbrc 417 . 2 (𝜑 → ⟨ (1st𝐴), (2nd𝐵)⟩ ∈ P)
389, 37eqeltrd 2273 1 (𝜑𝐵P)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wex 1506  wcel 2167  wral 2475  wrex 2476  {crab 2479  wss 3157  cop 3626   cuni 3840   cint 3875   class class class wbr 4034  cima 4667  cfv 5259  1st c1st 6205  2nd c2nd 6206  Qcnq 7364   <Q cltq 7369  Pcnp 7375  <P cltp 7379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-iltp 7554
This theorem is referenced by:  suplocexprlemub  7807  suplocexpr  7809
  Copyright terms: Public domain W3C validator