| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsrzring | GIF version | ||
| Description: Ring divisibility in the ring of integers corresponds to ordinary divisibility in ℤ. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) |
| Ref | Expression |
|---|---|
| dvdsrzring | ⊢ ∥ = (∥r‘ℤring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℤ) | |
| 2 | 1 | anim1i 340 | . . . 4 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) → (𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)) |
| 3 | simpl 109 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) → 𝑥 ∈ ℤ) | |
| 4 | zmulcl 9488 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑧 · 𝑥) ∈ ℤ) | |
| 5 | 4 | ancoms 268 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑧 · 𝑥) ∈ ℤ) |
| 6 | eleq1 2292 | . . . . . . . 8 ⊢ ((𝑧 · 𝑥) = 𝑦 → ((𝑧 · 𝑥) ∈ ℤ ↔ 𝑦 ∈ ℤ)) | |
| 7 | 5, 6 | syl5ibcom 155 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑧 · 𝑥) = 𝑦 → 𝑦 ∈ ℤ)) |
| 8 | 7 | rexlimdva 2648 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → (∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦 → 𝑦 ∈ ℤ)) |
| 9 | 8 | imp 124 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) → 𝑦 ∈ ℤ) |
| 10 | simpr 110 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) → ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) | |
| 11 | 3, 9, 10 | jca31 309 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)) |
| 12 | 2, 11 | impbii 126 | . . 3 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) ↔ (𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)) |
| 13 | 12 | opabbii 4150 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} |
| 14 | df-dvds 12285 | . 2 ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} | |
| 15 | zringbas 14545 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
| 16 | 15 | a1i 9 | . . . 4 ⊢ (⊤ → ℤ = (Base‘ℤring)) |
| 17 | eqidd 2230 | . . . 4 ⊢ (⊤ → (∥r‘ℤring) = (∥r‘ℤring)) | |
| 18 | zringring 14542 | . . . . 5 ⊢ ℤring ∈ Ring | |
| 19 | ringsrg 13996 | . . . . 5 ⊢ (ℤring ∈ Ring → ℤring ∈ SRing) | |
| 20 | 18, 19 | mp1i 10 | . . . 4 ⊢ (⊤ → ℤring ∈ SRing) |
| 21 | zringmulr 14548 | . . . . 5 ⊢ · = (.r‘ℤring) | |
| 22 | 21 | a1i 9 | . . . 4 ⊢ (⊤ → · = (.r‘ℤring)) |
| 23 | 16, 17, 20, 22 | dvdsrvald 14042 | . . 3 ⊢ (⊤ → (∥r‘ℤring) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)}) |
| 24 | 23 | mptru 1404 | . 2 ⊢ (∥r‘ℤring) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} |
| 25 | 13, 14, 24 | 3eqtr4i 2260 | 1 ⊢ ∥ = (∥r‘ℤring) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ⊤wtru 1396 ∈ wcel 2200 ∃wrex 2509 {copab 4143 ‘cfv 5314 (class class class)co 5994 · cmul 7992 ℤcz 9434 ∥ cdvds 12284 Basecbs 13018 .rcmulr 13097 SRingcsrg 13912 Ringcrg 13945 ∥rcdsr 14035 ℤringczring 14539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-addf 8109 ax-mulf 8110 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-7 9162 df-8 9163 df-9 9164 df-n0 9358 df-z 9435 df-dec 9567 df-uz 9711 df-rp 9838 df-fz 10193 df-cj 11339 df-abs 11496 df-dvds 12285 df-struct 13020 df-ndx 13021 df-slot 13022 df-base 13024 df-sets 13025 df-iress 13026 df-plusg 13109 df-mulr 13110 df-starv 13111 df-tset 13115 df-ple 13116 df-ds 13118 df-unif 13119 df-0g 13277 df-topgen 13279 df-mgm 13375 df-sgrp 13421 df-mnd 13436 df-grp 13522 df-minusg 13523 df-subg 13693 df-cmn 13809 df-abl 13810 df-mgp 13870 df-ur 13909 df-srg 13913 df-ring 13947 df-cring 13948 df-dvdsr 14038 df-subrg 14168 df-bl 14495 df-mopn 14496 df-fg 14498 df-metu 14499 df-cnfld 14506 df-zring 14540 |
| This theorem is referenced by: zndvds 14598 |
| Copyright terms: Public domain | W3C validator |