![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvdsrzring | GIF version |
Description: Ring divisibility in the ring of integers corresponds to ordinary divisibility in ℤ. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) |
Ref | Expression |
---|---|
dvdsrzring | ⊢ ∥ = (∥r‘ℤring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℤ) | |
2 | 1 | anim1i 340 | . . . 4 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) → (𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)) |
3 | simpl 109 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) → 𝑥 ∈ ℤ) | |
4 | zmulcl 9309 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑧 · 𝑥) ∈ ℤ) | |
5 | 4 | ancoms 268 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑧 · 𝑥) ∈ ℤ) |
6 | eleq1 2240 | . . . . . . . 8 ⊢ ((𝑧 · 𝑥) = 𝑦 → ((𝑧 · 𝑥) ∈ ℤ ↔ 𝑦 ∈ ℤ)) | |
7 | 5, 6 | syl5ibcom 155 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑧 · 𝑥) = 𝑦 → 𝑦 ∈ ℤ)) |
8 | 7 | rexlimdva 2594 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → (∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦 → 𝑦 ∈ ℤ)) |
9 | 8 | imp 124 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) → 𝑦 ∈ ℤ) |
10 | simpr 110 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) → ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) | |
11 | 3, 9, 10 | jca31 309 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)) |
12 | 2, 11 | impbii 126 | . . 3 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) ↔ (𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)) |
13 | 12 | opabbii 4072 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} |
14 | df-dvds 11798 | . 2 ⊢ ∥ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} | |
15 | zringbas 13633 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
16 | 15 | a1i 9 | . . . 4 ⊢ (⊤ → ℤ = (Base‘ℤring)) |
17 | eqidd 2178 | . . . 4 ⊢ (⊤ → (∥r‘ℤring) = (∥r‘ℤring)) | |
18 | zringring 13630 | . . . . 5 ⊢ ℤring ∈ Ring | |
19 | ringsrg 13235 | . . . . 5 ⊢ (ℤring ∈ Ring → ℤring ∈ SRing) | |
20 | 18, 19 | mp1i 10 | . . . 4 ⊢ (⊤ → ℤring ∈ SRing) |
21 | zringmulr 13636 | . . . . 5 ⊢ · = (.r‘ℤring) | |
22 | 21 | a1i 9 | . . . 4 ⊢ (⊤ → · = (.r‘ℤring)) |
23 | 16, 17, 20, 22 | dvdsrvald 13273 | . . 3 ⊢ (⊤ → (∥r‘ℤring) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)}) |
24 | 23 | mptru 1362 | . 2 ⊢ (∥r‘ℤring) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} |
25 | 13, 14, 24 | 3eqtr4i 2208 | 1 ⊢ ∥ = (∥r‘ℤring) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1353 ⊤wtru 1354 ∈ wcel 2148 ∃wrex 2456 {copab 4065 ‘cfv 5218 (class class class)co 5878 · cmul 7819 ℤcz 9256 ∥ cdvds 11797 Basecbs 12465 .rcmulr 12540 SRingcsrg 13157 Ringcrg 13190 ∥rcdsr 13266 ℤringczring 13627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-mulrcl 7913 ax-addcom 7914 ax-mulcom 7915 ax-addass 7916 ax-mulass 7917 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-1rid 7921 ax-0id 7922 ax-rnegex 7923 ax-precex 7924 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-apti 7929 ax-pre-ltadd 7930 ax-pre-mulgt0 7931 ax-addf 7936 ax-mulf 7937 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-tp 3602 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-reap 8535 df-inn 8923 df-2 8981 df-3 8982 df-4 8983 df-5 8984 df-6 8985 df-7 8986 df-8 8987 df-9 8988 df-n0 9180 df-z 9257 df-dec 9388 df-uz 9532 df-fz 10012 df-cj 10854 df-dvds 11798 df-struct 12467 df-ndx 12468 df-slot 12469 df-base 12471 df-sets 12472 df-iress 12473 df-plusg 12552 df-mulr 12553 df-starv 12554 df-0g 12713 df-mgm 12782 df-sgrp 12815 df-mnd 12825 df-grp 12887 df-minusg 12888 df-subg 13040 df-cmn 13101 df-abl 13102 df-mgp 13142 df-ur 13154 df-srg 13158 df-ring 13192 df-cring 13193 df-dvdsr 13269 df-subrg 13351 df-icnfld 13603 df-zring 13628 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |