| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsrzring | GIF version | ||
| Description: Ring divisibility in the ring of integers corresponds to ordinary divisibility in ℤ. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) |
| Ref | Expression |
|---|---|
| dvdsrzring | ⊢ ∥ = (∥r‘ℤring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℤ) | |
| 2 | 1 | anim1i 340 | . . . 4 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) → (𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)) |
| 3 | simpl 109 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) → 𝑥 ∈ ℤ) | |
| 4 | zmulcl 9396 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑧 · 𝑥) ∈ ℤ) | |
| 5 | 4 | ancoms 268 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑧 · 𝑥) ∈ ℤ) |
| 6 | eleq1 2259 | . . . . . . . 8 ⊢ ((𝑧 · 𝑥) = 𝑦 → ((𝑧 · 𝑥) ∈ ℤ ↔ 𝑦 ∈ ℤ)) | |
| 7 | 5, 6 | syl5ibcom 155 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑧 · 𝑥) = 𝑦 → 𝑦 ∈ ℤ)) |
| 8 | 7 | rexlimdva 2614 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → (∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦 → 𝑦 ∈ ℤ)) |
| 9 | 8 | imp 124 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) → 𝑦 ∈ ℤ) |
| 10 | simpr 110 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) → ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) | |
| 11 | 3, 9, 10 | jca31 309 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)) |
| 12 | 2, 11 | impbii 126 | . . 3 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) ↔ (𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)) |
| 13 | 12 | opabbii 4101 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} |
| 14 | df-dvds 11970 | . 2 ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} | |
| 15 | zringbas 14228 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
| 16 | 15 | a1i 9 | . . . 4 ⊢ (⊤ → ℤ = (Base‘ℤring)) |
| 17 | eqidd 2197 | . . . 4 ⊢ (⊤ → (∥r‘ℤring) = (∥r‘ℤring)) | |
| 18 | zringring 14225 | . . . . 5 ⊢ ℤring ∈ Ring | |
| 19 | ringsrg 13679 | . . . . 5 ⊢ (ℤring ∈ Ring → ℤring ∈ SRing) | |
| 20 | 18, 19 | mp1i 10 | . . . 4 ⊢ (⊤ → ℤring ∈ SRing) |
| 21 | zringmulr 14231 | . . . . 5 ⊢ · = (.r‘ℤring) | |
| 22 | 21 | a1i 9 | . . . 4 ⊢ (⊤ → · = (.r‘ℤring)) |
| 23 | 16, 17, 20, 22 | dvdsrvald 13725 | . . 3 ⊢ (⊤ → (∥r‘ℤring) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)}) |
| 24 | 23 | mptru 1373 | . 2 ⊢ (∥r‘ℤring) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} |
| 25 | 13, 14, 24 | 3eqtr4i 2227 | 1 ⊢ ∥ = (∥r‘ℤring) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ⊤wtru 1365 ∈ wcel 2167 ∃wrex 2476 {copab 4094 ‘cfv 5259 (class class class)co 5925 · cmul 7901 ℤcz 9343 ∥ cdvds 11969 Basecbs 12703 .rcmulr 12781 SRingcsrg 13595 Ringcrg 13628 ∥rcdsr 13718 ℤringczring 14222 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-addf 8018 ax-mulf 8019 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-n0 9267 df-z 9344 df-dec 9475 df-uz 9619 df-rp 9746 df-fz 10101 df-cj 11024 df-abs 11181 df-dvds 11970 df-struct 12705 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-iress 12711 df-plusg 12793 df-mulr 12794 df-starv 12795 df-tset 12799 df-ple 12800 df-ds 12802 df-unif 12803 df-0g 12960 df-topgen 12962 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 df-subg 13376 df-cmn 13492 df-abl 13493 df-mgp 13553 df-ur 13592 df-srg 13596 df-ring 13630 df-cring 13631 df-dvdsr 13721 df-subrg 13851 df-bl 14178 df-mopn 14179 df-fg 14181 df-metu 14182 df-cnfld 14189 df-zring 14223 |
| This theorem is referenced by: zndvds 14281 |
| Copyright terms: Public domain | W3C validator |