ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsrzring GIF version

Theorem dvdsrzring 14575
Description: Ring divisibility in the ring of integers corresponds to ordinary divisibility in . (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.)
Assertion
Ref Expression
dvdsrzring ∥ = (∥r‘ℤring)

Proof of Theorem dvdsrzring
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℤ)
21anim1i 340 . . . 4 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) → (𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦))
3 simpl 109 . . . . 5 ((𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) → 𝑥 ∈ ℤ)
4 zmulcl 9508 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑧 · 𝑥) ∈ ℤ)
54ancoms 268 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑧 · 𝑥) ∈ ℤ)
6 eleq1 2292 . . . . . . . 8 ((𝑧 · 𝑥) = 𝑦 → ((𝑧 · 𝑥) ∈ ℤ ↔ 𝑦 ∈ ℤ))
75, 6syl5ibcom 155 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑧 · 𝑥) = 𝑦𝑦 ∈ ℤ))
87rexlimdva 2648 . . . . . 6 (𝑥 ∈ ℤ → (∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦𝑦 ∈ ℤ))
98imp 124 . . . . 5 ((𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) → 𝑦 ∈ ℤ)
10 simpr 110 . . . . 5 ((𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) → ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)
113, 9, 10jca31 309 . . . 4 ((𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦))
122, 11impbii 126 . . 3 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) ↔ (𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦))
1312opabbii 4151 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)}
14 df-dvds 12307 . 2 ∥ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)}
15 zringbas 14568 . . . . 5 ℤ = (Base‘ℤring)
1615a1i 9 . . . 4 (⊤ → ℤ = (Base‘ℤring))
17 eqidd 2230 . . . 4 (⊤ → (∥r‘ℤring) = (∥r‘ℤring))
18 zringring 14565 . . . . 5 ring ∈ Ring
19 ringsrg 14018 . . . . 5 (ℤring ∈ Ring → ℤring ∈ SRing)
2018, 19mp1i 10 . . . 4 (⊤ → ℤring ∈ SRing)
21 zringmulr 14571 . . . . 5 · = (.r‘ℤring)
2221a1i 9 . . . 4 (⊤ → · = (.r‘ℤring))
2316, 17, 20, 22dvdsrvald 14065 . . 3 (⊤ → (∥r‘ℤring) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)})
2423mptru 1404 . 2 (∥r‘ℤring) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)}
2513, 14, 243eqtr4i 2260 1 ∥ = (∥r‘ℤring)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wtru 1396  wcel 2200  wrex 2509  {copab 4144  cfv 5318  (class class class)co 6007   · cmul 8012  cz 9454  cdvds 12306  Basecbs 13040  .rcmulr 13119  SRingcsrg 13934  Ringcrg 13967  rcdsr 14057  ringczring 14562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-addf 8129  ax-mulf 8130
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-z 9455  df-dec 9587  df-uz 9731  df-rp 9858  df-fz 10213  df-cj 11361  df-abs 11518  df-dvds 12307  df-struct 13042  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-plusg 13131  df-mulr 13132  df-starv 13133  df-tset 13137  df-ple 13138  df-ds 13140  df-unif 13141  df-0g 13299  df-topgen 13301  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-subg 13715  df-cmn 13831  df-abl 13832  df-mgp 13892  df-ur 13931  df-srg 13935  df-ring 13969  df-cring 13970  df-dvdsr 14060  df-subrg 14191  df-bl 14518  df-mopn 14519  df-fg 14521  df-metu 14522  df-cnfld 14529  df-zring 14563
This theorem is referenced by:  zndvds  14621
  Copyright terms: Public domain W3C validator