![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvdsrzring | GIF version |
Description: Ring divisibility in the ring of integers corresponds to ordinary divisibility in ℤ. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) |
Ref | Expression |
---|---|
dvdsrzring | ⊢ ∥ = (∥r‘ℤring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℤ) | |
2 | 1 | anim1i 340 | . . . 4 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) → (𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)) |
3 | simpl 109 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) → 𝑥 ∈ ℤ) | |
4 | zmulcl 9373 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑧 · 𝑥) ∈ ℤ) | |
5 | 4 | ancoms 268 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑧 · 𝑥) ∈ ℤ) |
6 | eleq1 2256 | . . . . . . . 8 ⊢ ((𝑧 · 𝑥) = 𝑦 → ((𝑧 · 𝑥) ∈ ℤ ↔ 𝑦 ∈ ℤ)) | |
7 | 5, 6 | syl5ibcom 155 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑧 · 𝑥) = 𝑦 → 𝑦 ∈ ℤ)) |
8 | 7 | rexlimdva 2611 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → (∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦 → 𝑦 ∈ ℤ)) |
9 | 8 | imp 124 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) → 𝑦 ∈ ℤ) |
10 | simpr 110 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) → ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) | |
11 | 3, 9, 10 | jca31 309 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)) |
12 | 2, 11 | impbii 126 | . . 3 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦) ↔ (𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)) |
13 | 12 | opabbii 4097 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} |
14 | df-dvds 11934 | . 2 ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} | |
15 | zringbas 14095 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
16 | 15 | a1i 9 | . . . 4 ⊢ (⊤ → ℤ = (Base‘ℤring)) |
17 | eqidd 2194 | . . . 4 ⊢ (⊤ → (∥r‘ℤring) = (∥r‘ℤring)) | |
18 | zringring 14092 | . . . . 5 ⊢ ℤring ∈ Ring | |
19 | ringsrg 13546 | . . . . 5 ⊢ (ℤring ∈ Ring → ℤring ∈ SRing) | |
20 | 18, 19 | mp1i 10 | . . . 4 ⊢ (⊤ → ℤring ∈ SRing) |
21 | zringmulr 14098 | . . . . 5 ⊢ · = (.r‘ℤring) | |
22 | 21 | a1i 9 | . . . 4 ⊢ (⊤ → · = (.r‘ℤring)) |
23 | 16, 17, 20, 22 | dvdsrvald 13592 | . . 3 ⊢ (⊤ → (∥r‘ℤring) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)}) |
24 | 23 | mptru 1373 | . 2 ⊢ (∥r‘ℤring) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℤ ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} |
25 | 13, 14, 24 | 3eqtr4i 2224 | 1 ⊢ ∥ = (∥r‘ℤring) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ⊤wtru 1365 ∈ wcel 2164 ∃wrex 2473 {copab 4090 ‘cfv 5255 (class class class)co 5919 · cmul 7879 ℤcz 9320 ∥ cdvds 11933 Basecbs 12621 .rcmulr 12699 SRingcsrg 13462 Ringcrg 13495 ∥rcdsr 13585 ℤringczring 14089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-addf 7996 ax-mulf 7997 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-tp 3627 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-9 9050 df-n0 9244 df-z 9321 df-dec 9452 df-uz 9596 df-rp 9723 df-fz 10078 df-cj 10989 df-abs 11146 df-dvds 11934 df-struct 12623 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-iress 12629 df-plusg 12711 df-mulr 12712 df-starv 12713 df-tset 12717 df-ple 12718 df-ds 12720 df-unif 12721 df-0g 12872 df-topgen 12874 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 df-minusg 13079 df-subg 13243 df-cmn 13359 df-abl 13360 df-mgp 13420 df-ur 13459 df-srg 13463 df-ring 13497 df-cring 13498 df-dvdsr 13588 df-subrg 13718 df-bl 14045 df-mopn 14046 df-fg 14048 df-metu 14049 df-cnfld 14056 df-zring 14090 |
This theorem is referenced by: zndvds 14148 |
Copyright terms: Public domain | W3C validator |