| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpidinv2 | GIF version | ||
| Description: A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010.) (Revised by AV, 1-Sep-2021.) |
| Ref | Expression |
|---|---|
| grplrinv.b | ⊢ 𝐵 = (Base‘𝐺) |
| grplrinv.p | ⊢ + = (+g‘𝐺) |
| grplrinv.i | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grpidinv2 | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → ((( 0 + 𝐴) = 𝐴 ∧ (𝐴 + 0 ) = 𝐴) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplrinv.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grplrinv.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 3 | grplrinv.i | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 4 | 1, 2, 3 | grplid 13407 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → ( 0 + 𝐴) = 𝐴) |
| 5 | 1, 2, 3 | grprid 13408 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → (𝐴 + 0 ) = 𝐴) |
| 6 | 1, 2, 3 | grplrinv 13433 | . . 3 ⊢ (𝐺 ∈ Grp → ∀𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑧) = 0 ∧ (𝑧 + 𝑦) = 0 )) |
| 7 | oveq2 5959 | . . . . . . 7 ⊢ (𝑧 = 𝐴 → (𝑦 + 𝑧) = (𝑦 + 𝐴)) | |
| 8 | 7 | eqeq1d 2215 | . . . . . 6 ⊢ (𝑧 = 𝐴 → ((𝑦 + 𝑧) = 0 ↔ (𝑦 + 𝐴) = 0 )) |
| 9 | oveq1 5958 | . . . . . . 7 ⊢ (𝑧 = 𝐴 → (𝑧 + 𝑦) = (𝐴 + 𝑦)) | |
| 10 | 9 | eqeq1d 2215 | . . . . . 6 ⊢ (𝑧 = 𝐴 → ((𝑧 + 𝑦) = 0 ↔ (𝐴 + 𝑦) = 0 )) |
| 11 | 8, 10 | anbi12d 473 | . . . . 5 ⊢ (𝑧 = 𝐴 → (((𝑦 + 𝑧) = 0 ∧ (𝑧 + 𝑦) = 0 ) ↔ ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 ))) |
| 12 | 11 | rexbidv 2508 | . . . 4 ⊢ (𝑧 = 𝐴 → (∃𝑦 ∈ 𝐵 ((𝑦 + 𝑧) = 0 ∧ (𝑧 + 𝑦) = 0 ) ↔ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 ))) |
| 13 | 12 | rspcv 2874 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑧) = 0 ∧ (𝑧 + 𝑦) = 0 ) → ∃𝑦 ∈ 𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 ))) |
| 14 | 6, 13 | mpan9 281 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 )) |
| 15 | 4, 5, 14 | jca31 309 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → ((( 0 + 𝐴) = 𝐴 ∧ (𝐴 + 0 ) = 𝐴) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 ))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 ‘cfv 5276 (class class class)co 5951 Basecbs 12876 +gcplusg 12953 0gc0g 13132 Grpcgrp 13376 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-cnex 8023 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-inn 9044 df-2 9102 df-ndx 12879 df-slot 12880 df-base 12882 df-plusg 12966 df-0g 13134 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-grp 13379 df-minusg 13380 |
| This theorem is referenced by: grpidinv 13435 |
| Copyright terms: Public domain | W3C validator |