ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcv GIF version

Theorem spcv 2734
Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.)
Hypotheses
Ref Expression
spcv.1 𝐴 ∈ V
spcv.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
spcv (∀𝑥𝜑𝜓)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem spcv
StepHypRef Expression
1 spcv.1 . 2 𝐴 ∈ V
2 spcv.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
32spcgv 2728 . 2 (𝐴 ∈ V → (∀𝑥𝜑𝜓))
41, 3ax-mp 7 1 (∀𝑥𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1297   = wceq 1299  wcel 1448  Vcvv 2641
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643
This theorem is referenced by:  morex  2821  exmidexmid  4060  exmidsssn  4063  exmidel  4066  rext  4075  ontr2exmid  4378  regexmidlem1  4386  reg2exmid  4389  relop  4627  disjxp1  6063  rdgtfr  6201  ssfiexmid  6699  domfiexmid  6701  diffitest  6710  findcard  6711  fiintim  6746  fisseneq  6749  finomni  6924  exmidomni  6926  exmidlpo  6927  exmidunben  11731  bj-d0clsepcl  12708  bj-inf2vnlem1  12753
  Copyright terms: Public domain W3C validator