| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spcv | GIF version | ||
| Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.) |
| Ref | Expression |
|---|---|
| spcv.1 | ⊢ 𝐴 ∈ V |
| spcv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spcv | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcv.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | spcv.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | spcgv 2851 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥𝜑 → 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 = wceq 1364 ∈ wcel 2167 Vcvv 2763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 |
| This theorem is referenced by: morex 2948 exmidexmid 4229 exmidsssn 4235 exmidel 4238 rext 4248 ontr2exmid 4561 regexmidlem1 4569 reg2exmid 4572 relop 4816 uchoice 6195 disjxp1 6294 rdgtfr 6432 ssfiexmid 6937 domfiexmid 6939 diffitest 6948 findcard 6949 exmidpw2en 6973 fiintim 6992 fisseneq 6995 finomni 7206 exmidomni 7208 exmidlpo 7209 exmidunben 12643 ivthreinc 14881 bj-d0clsepcl 15571 bj-inf2vnlem1 15616 subctctexmid 15645 |
| Copyright terms: Public domain | W3C validator |