ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcv GIF version

Theorem spcv 2897
Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.)
Hypotheses
Ref Expression
spcv.1 𝐴 ∈ V
spcv.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
spcv (∀𝑥𝜑𝜓)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem spcv
StepHypRef Expression
1 spcv.1 . 2 𝐴 ∈ V
2 spcv.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
32spcgv 2890 . 2 (𝐴 ∈ V → (∀𝑥𝜑𝜓))
41, 3ax-mp 5 1 (∀𝑥𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1393   = wceq 1395  wcel 2200  Vcvv 2799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801
This theorem is referenced by:  morex  2987  exmidexmid  4279  exmidsssn  4285  exmidel  4288  rext  4300  ontr2exmid  4614  regexmidlem1  4622  reg2exmid  4625  relop  4869  uchoice  6273  disjxp1  6372  rdgtfr  6510  ssfiexmid  7026  domfiexmid  7028  diffitest  7037  findcard  7038  exmidpw2en  7062  fiintim  7081  fisseneq  7084  finomni  7295  exmidomni  7297  exmidlpo  7298  exmidunben  12983  ivthreinc  15304  bj-d0clsepcl  16218  bj-inf2vnlem1  16263  subctctexmid  16297
  Copyright terms: Public domain W3C validator