ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcv GIF version

Theorem spcv 2871
Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.)
Hypotheses
Ref Expression
spcv.1 𝐴 ∈ V
spcv.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
spcv (∀𝑥𝜑𝜓)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem spcv
StepHypRef Expression
1 spcv.1 . 2 𝐴 ∈ V
2 spcv.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
32spcgv 2864 . 2 (𝐴 ∈ V → (∀𝑥𝜑𝜓))
41, 3ax-mp 5 1 (∀𝑥𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1371   = wceq 1373  wcel 2177  Vcvv 2773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775
This theorem is referenced by:  morex  2961  exmidexmid  4247  exmidsssn  4253  exmidel  4256  rext  4266  ontr2exmid  4580  regexmidlem1  4588  reg2exmid  4591  relop  4835  uchoice  6235  disjxp1  6334  rdgtfr  6472  ssfiexmid  6987  domfiexmid  6989  diffitest  6998  findcard  6999  exmidpw2en  7023  fiintim  7042  fisseneq  7045  finomni  7256  exmidomni  7258  exmidlpo  7259  exmidunben  12867  ivthreinc  15187  bj-d0clsepcl  15995  bj-inf2vnlem1  16040  subctctexmid  16072
  Copyright terms: Public domain W3C validator