Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simprll | GIF version |
Description: Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.) |
Ref | Expression |
---|---|
simprll | ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
2 | 1 | ad2antrl 487 | 1 ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: imain 5278 fcof1 5759 mpo0 5920 eroveu 6600 sbthlemi6 6935 sbthlemi8 6937 addcmpblnq 7316 mulcmpblnq 7317 ordpipqqs 7323 addcmpblnq0 7392 mulcmpblnq0 7393 nnnq0lem1 7395 prarloclemcalc 7451 addlocpr 7485 distrlem4prl 7533 distrlem4pru 7534 ltpopr 7544 addcmpblnr 7688 mulcmpblnrlemg 7689 mulcmpblnr 7690 prsrlem1 7691 ltsrprg 7696 apreap 8493 apreim 8509 divdivdivap 8617 divmuleqap 8621 divadddivap 8631 divsubdivap 8632 ledivdiv 8793 lediv12a 8797 exbtwnz 10194 seq3caopr 10426 leexp2r 10517 zfz1iso 10763 recvguniq 10946 rsqrmo 10978 summodclem2 11332 prodmodc 11528 qredeu 12038 pw2dvdseu 12109 pcadd 12280 mhmpropd 12676 issubmd 12683 grprcan 12727 epttop 12843 txdis1cn 13031 metequiv2 13249 mulc1cncf 13329 cncfmptc 13335 cncfmptid 13336 addccncf 13339 negcncf 13341 dedekindicclemicc 13363 2sqlem5 13708 2sqlem9 13713 |
Copyright terms: Public domain | W3C validator |