Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simprll | GIF version |
Description: Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.) |
Ref | Expression |
---|---|
simprll | ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
2 | 1 | ad2antrl 487 | 1 ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: imain 5280 fcof1 5762 mpo0 5923 eroveu 6604 sbthlemi6 6939 sbthlemi8 6941 addcmpblnq 7329 mulcmpblnq 7330 ordpipqqs 7336 addcmpblnq0 7405 mulcmpblnq0 7406 nnnq0lem1 7408 prarloclemcalc 7464 addlocpr 7498 distrlem4prl 7546 distrlem4pru 7547 ltpopr 7557 addcmpblnr 7701 mulcmpblnrlemg 7702 mulcmpblnr 7703 prsrlem1 7704 ltsrprg 7709 apreap 8506 apreim 8522 divdivdivap 8630 divmuleqap 8634 divadddivap 8644 divsubdivap 8645 ledivdiv 8806 lediv12a 8810 exbtwnz 10207 seq3caopr 10439 leexp2r 10530 zfz1iso 10776 recvguniq 10959 rsqrmo 10991 summodclem2 11345 prodmodc 11541 qredeu 12051 pw2dvdseu 12122 pcadd 12293 mhmpropd 12689 issubmd 12696 grprcan 12740 epttop 12884 txdis1cn 13072 metequiv2 13290 mulc1cncf 13370 cncfmptc 13376 cncfmptid 13377 addccncf 13380 negcncf 13382 dedekindicclemicc 13404 2sqlem5 13749 2sqlem9 13754 |
Copyright terms: Public domain | W3C validator |