Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simprll | GIF version |
Description: Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.) |
Ref | Expression |
---|---|
simprll | ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
2 | 1 | ad2antrl 482 | 1 ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: imain 5270 fcof1 5751 mpo0 5912 eroveu 6592 sbthlemi6 6927 sbthlemi8 6929 addcmpblnq 7308 mulcmpblnq 7309 ordpipqqs 7315 addcmpblnq0 7384 mulcmpblnq0 7385 nnnq0lem1 7387 prarloclemcalc 7443 addlocpr 7477 distrlem4prl 7525 distrlem4pru 7526 ltpopr 7536 addcmpblnr 7680 mulcmpblnrlemg 7681 mulcmpblnr 7682 prsrlem1 7683 ltsrprg 7688 apreap 8485 apreim 8501 divdivdivap 8609 divmuleqap 8613 divadddivap 8623 divsubdivap 8624 ledivdiv 8785 lediv12a 8789 exbtwnz 10186 seq3caopr 10418 leexp2r 10509 zfz1iso 10754 recvguniq 10937 rsqrmo 10969 summodclem2 11323 prodmodc 11519 qredeu 12029 pw2dvdseu 12100 pcadd 12271 epttop 12730 txdis1cn 12918 metequiv2 13136 mulc1cncf 13216 cncfmptc 13222 cncfmptid 13223 addccncf 13226 negcncf 13228 dedekindicclemicc 13250 2sqlem5 13595 2sqlem9 13600 |
Copyright terms: Public domain | W3C validator |