ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dif1enen GIF version

Theorem dif1enen 6858
Description: Subtracting one element from each of two equinumerous finite sets. (Contributed by Jim Kingdon, 5-Jun-2022.)
Hypotheses
Ref Expression
dif1enen.a (𝜑𝐴 ∈ Fin)
dif1enen.ab (𝜑𝐴𝐵)
dif1enen.c (𝜑𝐶𝐴)
dif1enen.d (𝜑𝐷𝐵)
Assertion
Ref Expression
dif1enen (𝜑 → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))

Proof of Theorem dif1enen
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dif1enen.a . . 3 (𝜑𝐴 ∈ Fin)
2 isfi 6739 . . 3 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
31, 2sylib 121 . 2 (𝜑 → ∃𝑛 ∈ ω 𝐴𝑛)
4 simplrr 531 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴𝑛)
5 breq2 3993 . . . . . . 7 (𝑛 = ∅ → (𝐴𝑛𝐴 ≈ ∅))
65adantl 275 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → (𝐴𝑛𝐴 ≈ ∅))
74, 6mpbid 146 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴 ≈ ∅)
8 en0 6773 . . . . 5 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
97, 8sylib 121 . . . 4 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴 = ∅)
10 dif1enen.c . . . . . 6 (𝜑𝐶𝐴)
11 n0i 3420 . . . . . 6 (𝐶𝐴 → ¬ 𝐴 = ∅)
1210, 11syl 14 . . . . 5 (𝜑 → ¬ 𝐴 = ∅)
1312ad2antrr 485 . . . 4 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → ¬ 𝐴 = ∅)
149, 13pm2.21dd 615 . . 3 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))
15 simplr 525 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝑚 ∈ ω)
16 simprr 527 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐴𝑛)
1716ad2antrr 485 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐴𝑛)
18 breq2 3993 . . . . . . . . . 10 (𝑛 = suc 𝑚 → (𝐴𝑛𝐴 ≈ suc 𝑚))
1918adantl 275 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → (𝐴𝑛𝐴 ≈ suc 𝑚))
2017, 19mpbid 146 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐴 ≈ suc 𝑚)
2110ad3antrrr 489 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐶𝐴)
22 dif1en 6857 . . . . . . . 8 ((𝑚 ∈ ω ∧ 𝐴 ≈ suc 𝑚𝐶𝐴) → (𝐴 ∖ {𝐶}) ≈ 𝑚)
2315, 20, 21, 22syl3anc 1233 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → (𝐴 ∖ {𝐶}) ≈ 𝑚)
24 dif1enen.ab . . . . . . . . . . . 12 (𝜑𝐴𝐵)
2524ad3antrrr 489 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐴𝐵)
2625ensymd 6761 . . . . . . . . . 10 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐵𝐴)
27 entr 6762 . . . . . . . . . 10 ((𝐵𝐴𝐴 ≈ suc 𝑚) → 𝐵 ≈ suc 𝑚)
2826, 20, 27syl2anc 409 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐵 ≈ suc 𝑚)
29 dif1enen.d . . . . . . . . . 10 (𝜑𝐷𝐵)
3029ad3antrrr 489 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐷𝐵)
31 dif1en 6857 . . . . . . . . 9 ((𝑚 ∈ ω ∧ 𝐵 ≈ suc 𝑚𝐷𝐵) → (𝐵 ∖ {𝐷}) ≈ 𝑚)
3215, 28, 30, 31syl3anc 1233 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → (𝐵 ∖ {𝐷}) ≈ 𝑚)
3332ensymd 6761 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝑚 ≈ (𝐵 ∖ {𝐷}))
34 entr 6762 . . . . . . 7 (((𝐴 ∖ {𝐶}) ≈ 𝑚𝑚 ≈ (𝐵 ∖ {𝐷})) → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))
3523, 33, 34syl2anc 409 . . . . . 6 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))
3635ex 114 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) → (𝑛 = suc 𝑚 → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷})))
3736rexlimdva 2587 . . . 4 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (∃𝑚 ∈ ω 𝑛 = suc 𝑚 → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷})))
3837imp 123 . . 3 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ ∃𝑚 ∈ ω 𝑛 = suc 𝑚) → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))
39 nn0suc 4588 . . . 4 (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
4039ad2antrl 487 . . 3 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
4114, 38, 40mpjaodan 793 . 2 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))
423, 41rexlimddv 2592 1 (𝜑 → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703   = wceq 1348  wcel 2141  wrex 2449  cdif 3118  c0 3414  {csn 3583   class class class wbr 3989  suc csuc 4350  ωcom 4574  cen 6716  Fincfn 6718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-er 6513  df-en 6719  df-fin 6721
This theorem is referenced by:  fisseneq  6909
  Copyright terms: Public domain W3C validator