ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dif1enen GIF version

Theorem dif1enen 7042
Description: Subtracting one element from each of two equinumerous finite sets. (Contributed by Jim Kingdon, 5-Jun-2022.)
Hypotheses
Ref Expression
dif1enen.a (𝜑𝐴 ∈ Fin)
dif1enen.ab (𝜑𝐴𝐵)
dif1enen.c (𝜑𝐶𝐴)
dif1enen.d (𝜑𝐷𝐵)
Assertion
Ref Expression
dif1enen (𝜑 → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))

Proof of Theorem dif1enen
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dif1enen.a . . 3 (𝜑𝐴 ∈ Fin)
2 isfi 6912 . . 3 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
31, 2sylib 122 . 2 (𝜑 → ∃𝑛 ∈ ω 𝐴𝑛)
4 simplrr 536 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴𝑛)
5 breq2 4087 . . . . . . 7 (𝑛 = ∅ → (𝐴𝑛𝐴 ≈ ∅))
65adantl 277 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → (𝐴𝑛𝐴 ≈ ∅))
74, 6mpbid 147 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴 ≈ ∅)
8 en0 6947 . . . . 5 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
97, 8sylib 122 . . . 4 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴 = ∅)
10 dif1enen.c . . . . . 6 (𝜑𝐶𝐴)
11 n0i 3497 . . . . . 6 (𝐶𝐴 → ¬ 𝐴 = ∅)
1210, 11syl 14 . . . . 5 (𝜑 → ¬ 𝐴 = ∅)
1312ad2antrr 488 . . . 4 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → ¬ 𝐴 = ∅)
149, 13pm2.21dd 623 . . 3 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))
15 simplr 528 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝑚 ∈ ω)
16 simprr 531 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐴𝑛)
1716ad2antrr 488 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐴𝑛)
18 breq2 4087 . . . . . . . . . 10 (𝑛 = suc 𝑚 → (𝐴𝑛𝐴 ≈ suc 𝑚))
1918adantl 277 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → (𝐴𝑛𝐴 ≈ suc 𝑚))
2017, 19mpbid 147 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐴 ≈ suc 𝑚)
2110ad3antrrr 492 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐶𝐴)
22 dif1en 7041 . . . . . . . 8 ((𝑚 ∈ ω ∧ 𝐴 ≈ suc 𝑚𝐶𝐴) → (𝐴 ∖ {𝐶}) ≈ 𝑚)
2315, 20, 21, 22syl3anc 1271 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → (𝐴 ∖ {𝐶}) ≈ 𝑚)
24 dif1enen.ab . . . . . . . . . . . 12 (𝜑𝐴𝐵)
2524ad3antrrr 492 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐴𝐵)
2625ensymd 6935 . . . . . . . . . 10 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐵𝐴)
27 entr 6936 . . . . . . . . . 10 ((𝐵𝐴𝐴 ≈ suc 𝑚) → 𝐵 ≈ suc 𝑚)
2826, 20, 27syl2anc 411 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐵 ≈ suc 𝑚)
29 dif1enen.d . . . . . . . . . 10 (𝜑𝐷𝐵)
3029ad3antrrr 492 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐷𝐵)
31 dif1en 7041 . . . . . . . . 9 ((𝑚 ∈ ω ∧ 𝐵 ≈ suc 𝑚𝐷𝐵) → (𝐵 ∖ {𝐷}) ≈ 𝑚)
3215, 28, 30, 31syl3anc 1271 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → (𝐵 ∖ {𝐷}) ≈ 𝑚)
3332ensymd 6935 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝑚 ≈ (𝐵 ∖ {𝐷}))
34 entr 6936 . . . . . . 7 (((𝐴 ∖ {𝐶}) ≈ 𝑚𝑚 ≈ (𝐵 ∖ {𝐷})) → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))
3523, 33, 34syl2anc 411 . . . . . 6 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))
3635ex 115 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) → (𝑛 = suc 𝑚 → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷})))
3736rexlimdva 2648 . . . 4 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (∃𝑚 ∈ ω 𝑛 = suc 𝑚 → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷})))
3837imp 124 . . 3 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ ∃𝑚 ∈ ω 𝑛 = suc 𝑚) → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))
39 nn0suc 4696 . . . 4 (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
4039ad2antrl 490 . . 3 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
4114, 38, 40mpjaodan 803 . 2 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))
423, 41rexlimddv 2653 1 (𝜑 → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wcel 2200  wrex 2509  cdif 3194  c0 3491  {csn 3666   class class class wbr 4083  suc csuc 4456  ωcom 4682  cen 6885  Fincfn 6887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-er 6680  df-en 6888  df-fin 6890
This theorem is referenced by:  fisseneq  7096
  Copyright terms: Public domain W3C validator