Step | Hyp | Ref
| Expression |
1 | | dif1enen.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
2 | | isfi 6739 |
. . 3
⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
3 | 1, 2 | sylib 121 |
. 2
⊢ (𝜑 → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
4 | | simplrr 531 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑛 = ∅) → 𝐴 ≈ 𝑛) |
5 | | breq2 3993 |
. . . . . . 7
⊢ (𝑛 = ∅ → (𝐴 ≈ 𝑛 ↔ 𝐴 ≈ ∅)) |
6 | 5 | adantl 275 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑛 = ∅) → (𝐴 ≈ 𝑛 ↔ 𝐴 ≈ ∅)) |
7 | 4, 6 | mpbid 146 |
. . . . 5
⊢ (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑛 = ∅) → 𝐴 ≈ ∅) |
8 | | en0 6773 |
. . . . 5
⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) |
9 | 7, 8 | sylib 121 |
. . . 4
⊢ (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑛 = ∅) → 𝐴 = ∅) |
10 | | dif1enen.c |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ 𝐴) |
11 | | n0i 3420 |
. . . . . 6
⊢ (𝐶 ∈ 𝐴 → ¬ 𝐴 = ∅) |
12 | 10, 11 | syl 14 |
. . . . 5
⊢ (𝜑 → ¬ 𝐴 = ∅) |
13 | 12 | ad2antrr 485 |
. . . 4
⊢ (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑛 = ∅) → ¬ 𝐴 = ∅) |
14 | 9, 13 | pm2.21dd 615 |
. . 3
⊢ (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑛 = ∅) → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷})) |
15 | | simplr 525 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝑚 ∈ ω) |
16 | | simprr 527 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝐴 ≈ 𝑛) |
17 | 16 | ad2antrr 485 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐴 ≈ 𝑛) |
18 | | breq2 3993 |
. . . . . . . . . 10
⊢ (𝑛 = suc 𝑚 → (𝐴 ≈ 𝑛 ↔ 𝐴 ≈ suc 𝑚)) |
19 | 18 | adantl 275 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → (𝐴 ≈ 𝑛 ↔ 𝐴 ≈ suc 𝑚)) |
20 | 17, 19 | mpbid 146 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐴 ≈ suc 𝑚) |
21 | 10 | ad3antrrr 489 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐶 ∈ 𝐴) |
22 | | dif1en 6857 |
. . . . . . . 8
⊢ ((𝑚 ∈ ω ∧ 𝐴 ≈ suc 𝑚 ∧ 𝐶 ∈ 𝐴) → (𝐴 ∖ {𝐶}) ≈ 𝑚) |
23 | 15, 20, 21, 22 | syl3anc 1233 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → (𝐴 ∖ {𝐶}) ≈ 𝑚) |
24 | | dif1enen.ab |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ≈ 𝐵) |
25 | 24 | ad3antrrr 489 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐴 ≈ 𝐵) |
26 | 25 | ensymd 6761 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐵 ≈ 𝐴) |
27 | | entr 6762 |
. . . . . . . . . 10
⊢ ((𝐵 ≈ 𝐴 ∧ 𝐴 ≈ suc 𝑚) → 𝐵 ≈ suc 𝑚) |
28 | 26, 20, 27 | syl2anc 409 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐵 ≈ suc 𝑚) |
29 | | dif1enen.d |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ 𝐵) |
30 | 29 | ad3antrrr 489 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐷 ∈ 𝐵) |
31 | | dif1en 6857 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ω ∧ 𝐵 ≈ suc 𝑚 ∧ 𝐷 ∈ 𝐵) → (𝐵 ∖ {𝐷}) ≈ 𝑚) |
32 | 15, 28, 30, 31 | syl3anc 1233 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → (𝐵 ∖ {𝐷}) ≈ 𝑚) |
33 | 32 | ensymd 6761 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝑚 ≈ (𝐵 ∖ {𝐷})) |
34 | | entr 6762 |
. . . . . . 7
⊢ (((𝐴 ∖ {𝐶}) ≈ 𝑚 ∧ 𝑚 ≈ (𝐵 ∖ {𝐷})) → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷})) |
35 | 23, 33, 34 | syl2anc 409 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷})) |
36 | 35 | ex 114 |
. . . . 5
⊢ (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑚 ∈ ω) → (𝑛 = suc 𝑚 → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))) |
37 | 36 | rexlimdva 2587 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (∃𝑚 ∈ ω 𝑛 = suc 𝑚 → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))) |
38 | 37 | imp 123 |
. . 3
⊢ (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ ∃𝑚 ∈ ω 𝑛 = suc 𝑚) → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷})) |
39 | | nn0suc 4588 |
. . . 4
⊢ (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚)) |
40 | 39 | ad2antrl 487 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚)) |
41 | 14, 38, 40 | mpjaodan 793 |
. 2
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷})) |
42 | 3, 41 | rexlimddv 2592 |
1
⊢ (𝜑 → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷})) |