ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dif1enen GIF version

Theorem dif1enen 6874
Description: Subtracting one element from each of two equinumerous finite sets. (Contributed by Jim Kingdon, 5-Jun-2022.)
Hypotheses
Ref Expression
dif1enen.a (𝜑𝐴 ∈ Fin)
dif1enen.ab (𝜑𝐴𝐵)
dif1enen.c (𝜑𝐶𝐴)
dif1enen.d (𝜑𝐷𝐵)
Assertion
Ref Expression
dif1enen (𝜑 → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))

Proof of Theorem dif1enen
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dif1enen.a . . 3 (𝜑𝐴 ∈ Fin)
2 isfi 6755 . . 3 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
31, 2sylib 122 . 2 (𝜑 → ∃𝑛 ∈ ω 𝐴𝑛)
4 simplrr 536 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴𝑛)
5 breq2 4004 . . . . . . 7 (𝑛 = ∅ → (𝐴𝑛𝐴 ≈ ∅))
65adantl 277 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → (𝐴𝑛𝐴 ≈ ∅))
74, 6mpbid 147 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴 ≈ ∅)
8 en0 6789 . . . . 5 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
97, 8sylib 122 . . . 4 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴 = ∅)
10 dif1enen.c . . . . . 6 (𝜑𝐶𝐴)
11 n0i 3428 . . . . . 6 (𝐶𝐴 → ¬ 𝐴 = ∅)
1210, 11syl 14 . . . . 5 (𝜑 → ¬ 𝐴 = ∅)
1312ad2antrr 488 . . . 4 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → ¬ 𝐴 = ∅)
149, 13pm2.21dd 620 . . 3 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))
15 simplr 528 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝑚 ∈ ω)
16 simprr 531 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐴𝑛)
1716ad2antrr 488 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐴𝑛)
18 breq2 4004 . . . . . . . . . 10 (𝑛 = suc 𝑚 → (𝐴𝑛𝐴 ≈ suc 𝑚))
1918adantl 277 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → (𝐴𝑛𝐴 ≈ suc 𝑚))
2017, 19mpbid 147 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐴 ≈ suc 𝑚)
2110ad3antrrr 492 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐶𝐴)
22 dif1en 6873 . . . . . . . 8 ((𝑚 ∈ ω ∧ 𝐴 ≈ suc 𝑚𝐶𝐴) → (𝐴 ∖ {𝐶}) ≈ 𝑚)
2315, 20, 21, 22syl3anc 1238 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → (𝐴 ∖ {𝐶}) ≈ 𝑚)
24 dif1enen.ab . . . . . . . . . . . 12 (𝜑𝐴𝐵)
2524ad3antrrr 492 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐴𝐵)
2625ensymd 6777 . . . . . . . . . 10 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐵𝐴)
27 entr 6778 . . . . . . . . . 10 ((𝐵𝐴𝐴 ≈ suc 𝑚) → 𝐵 ≈ suc 𝑚)
2826, 20, 27syl2anc 411 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐵 ≈ suc 𝑚)
29 dif1enen.d . . . . . . . . . 10 (𝜑𝐷𝐵)
3029ad3antrrr 492 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐷𝐵)
31 dif1en 6873 . . . . . . . . 9 ((𝑚 ∈ ω ∧ 𝐵 ≈ suc 𝑚𝐷𝐵) → (𝐵 ∖ {𝐷}) ≈ 𝑚)
3215, 28, 30, 31syl3anc 1238 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → (𝐵 ∖ {𝐷}) ≈ 𝑚)
3332ensymd 6777 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝑚 ≈ (𝐵 ∖ {𝐷}))
34 entr 6778 . . . . . . 7 (((𝐴 ∖ {𝐶}) ≈ 𝑚𝑚 ≈ (𝐵 ∖ {𝐷})) → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))
3523, 33, 34syl2anc 411 . . . . . 6 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))
3635ex 115 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) → (𝑛 = suc 𝑚 → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷})))
3736rexlimdva 2594 . . . 4 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (∃𝑚 ∈ ω 𝑛 = suc 𝑚 → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷})))
3837imp 124 . . 3 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ ∃𝑚 ∈ ω 𝑛 = suc 𝑚) → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))
39 nn0suc 4600 . . . 4 (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
4039ad2antrl 490 . . 3 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
4114, 38, 40mpjaodan 798 . 2 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))
423, 41rexlimddv 2599 1 (𝜑 → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708   = wceq 1353  wcel 2148  wrex 2456  cdif 3126  c0 3422  {csn 3591   class class class wbr 4000  suc csuc 4362  ωcom 4586  cen 6732  Fincfn 6734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-er 6529  df-en 6735  df-fin 6737
This theorem is referenced by:  fisseneq  6925
  Copyright terms: Public domain W3C validator