| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fprodcllem | GIF version | ||
| Description: Finite product closure lemma. (Contributed by Scott Fenton, 14-Dec-2017.) |
| Ref | Expression |
|---|---|
| fprodcllem.1 | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| fprodcllem.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
| fprodcllem.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fprodcllem.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) |
| fprodcllem.5 | ⊢ (𝜑 → 1 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| fprodcllem | ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodeq1 11939 | . . . . 5 ⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵) | |
| 2 | prod0 11971 | . . . . 5 ⊢ ∏𝑘 ∈ ∅ 𝐵 = 1 | |
| 3 | 1, 2 | eqtrdi 2255 | . . . 4 ⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐵 = 1) |
| 4 | 3 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = ∅) → ∏𝑘 ∈ 𝐴 𝐵 = 1) |
| 5 | fprodcllem.5 | . . . 4 ⊢ (𝜑 → 1 ∈ 𝑆) | |
| 6 | 5 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = ∅) → 1 ∈ 𝑆) |
| 7 | 4, 6 | eqeltrd 2283 | . 2 ⊢ ((𝜑 ∧ 𝐴 = ∅) → ∏𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| 8 | fprodcllem.1 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
| 9 | 8 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝑆 ⊆ ℂ) |
| 10 | fprodcllem.2 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) | |
| 11 | 10 | adantlr 477 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
| 12 | fprodcllem.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 13 | 12 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin) |
| 14 | fprodcllem.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) | |
| 15 | 14 | adantlr 477 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ ∅) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) |
| 16 | simpr 110 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) | |
| 17 | 9, 11, 13, 15, 16 | fprodcl2lem 11991 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∏𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| 18 | fin0or 6998 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ∃𝑤 𝑤 ∈ 𝐴)) | |
| 19 | n0r 3478 | . . . 4 ⊢ (∃𝑤 𝑤 ∈ 𝐴 → 𝐴 ≠ ∅) | |
| 20 | 19 | orim2i 763 | . . 3 ⊢ ((𝐴 = ∅ ∨ ∃𝑤 𝑤 ∈ 𝐴) → (𝐴 = ∅ ∨ 𝐴 ≠ ∅)) |
| 21 | 12, 18, 20 | 3syl 17 | . 2 ⊢ (𝜑 → (𝐴 = ∅ ∨ 𝐴 ≠ ∅)) |
| 22 | 7, 17, 21 | mpjaodan 800 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 710 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ≠ wne 2377 ⊆ wss 3170 ∅c0 3464 (class class class)co 5957 Fincfn 6840 ℂcc 7943 1c1 7946 · cmul 7950 ∏cprod 11936 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 ax-caucvg 8065 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-isom 5289 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-irdg 6469 df-frec 6490 df-1o 6515 df-oadd 6519 df-er 6633 df-en 6841 df-dom 6842 df-fin 6843 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-n0 9316 df-z 9393 df-uz 9669 df-q 9761 df-rp 9796 df-fz 10151 df-fzo 10285 df-seqfrec 10615 df-exp 10706 df-ihash 10943 df-cj 11228 df-re 11229 df-im 11230 df-rsqrt 11384 df-abs 11385 df-clim 11665 df-proddc 11937 |
| This theorem is referenced by: fprodcl 11993 fprodrecl 11994 fprodzcl 11995 fprodnncl 11996 fprodrpcl 11997 fprodnn0cl 11998 fprodcllemf 11999 |
| Copyright terms: Public domain | W3C validator |