![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fprodcllem | GIF version |
Description: Finite product closure lemma. (Contributed by Scott Fenton, 14-Dec-2017.) |
Ref | Expression |
---|---|
fprodcllem.1 | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
fprodcllem.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
fprodcllem.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fprodcllem.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) |
fprodcllem.5 | ⊢ (𝜑 → 1 ∈ 𝑆) |
Ref | Expression |
---|---|
fprodcllem | ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodeq1 11699 | . . . . 5 ⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵) | |
2 | prod0 11731 | . . . . 5 ⊢ ∏𝑘 ∈ ∅ 𝐵 = 1 | |
3 | 1, 2 | eqtrdi 2242 | . . . 4 ⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐵 = 1) |
4 | 3 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = ∅) → ∏𝑘 ∈ 𝐴 𝐵 = 1) |
5 | fprodcllem.5 | . . . 4 ⊢ (𝜑 → 1 ∈ 𝑆) | |
6 | 5 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = ∅) → 1 ∈ 𝑆) |
7 | 4, 6 | eqeltrd 2270 | . 2 ⊢ ((𝜑 ∧ 𝐴 = ∅) → ∏𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
8 | fprodcllem.1 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
9 | 8 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝑆 ⊆ ℂ) |
10 | fprodcllem.2 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) | |
11 | 10 | adantlr 477 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
12 | fprodcllem.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
13 | 12 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin) |
14 | fprodcllem.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) | |
15 | 14 | adantlr 477 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ ∅) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) |
16 | simpr 110 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) | |
17 | 9, 11, 13, 15, 16 | fprodcl2lem 11751 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∏𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
18 | fin0or 6944 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ∃𝑤 𝑤 ∈ 𝐴)) | |
19 | n0r 3461 | . . . 4 ⊢ (∃𝑤 𝑤 ∈ 𝐴 → 𝐴 ≠ ∅) | |
20 | 19 | orim2i 762 | . . 3 ⊢ ((𝐴 = ∅ ∨ ∃𝑤 𝑤 ∈ 𝐴) → (𝐴 = ∅ ∨ 𝐴 ≠ ∅)) |
21 | 12, 18, 20 | 3syl 17 | . 2 ⊢ (𝜑 → (𝐴 = ∅ ∨ 𝐴 ≠ ∅)) |
22 | 7, 17, 21 | mpjaodan 799 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ≠ wne 2364 ⊆ wss 3154 ∅c0 3447 (class class class)co 5919 Fincfn 6796 ℂcc 7872 1c1 7875 · cmul 7879 ∏cprod 11696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-frec 6446 df-1o 6471 df-oadd 6475 df-er 6589 df-en 6797 df-dom 6798 df-fin 6799 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-fz 10078 df-fzo 10212 df-seqfrec 10522 df-exp 10613 df-ihash 10850 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-clim 11425 df-proddc 11697 |
This theorem is referenced by: fprodcl 11753 fprodrecl 11754 fprodzcl 11755 fprodnncl 11756 fprodrpcl 11757 fprodnn0cl 11758 fprodcllemf 11759 |
Copyright terms: Public domain | W3C validator |