ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infn0 GIF version

Theorem infn0 7035
Description: An infinite set is not empty. (Contributed by NM, 23-Oct-2004.)
Assertion
Ref Expression
infn0 (ω ≼ 𝐴𝐴 ≠ ∅)

Proof of Theorem infn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 infm 7034 . 2 (ω ≼ 𝐴 → ∃𝑥 𝑥𝐴)
2 n0r 3485 . 2 (∃𝑥 𝑥𝐴𝐴 ≠ ∅)
31, 2syl 14 1 (ω ≼ 𝐴𝐴 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1518  wcel 2180  wne 2380  c0 3471   class class class wbr 4062  ωcom 4659  cdom 6856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-id 4361  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fv 5302  df-dom 6859
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator