ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumcllem GIF version

Theorem fsumcllem 11710
Description: - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 3-Jun-2014.)
Hypotheses
Ref Expression
fsumcllem.1 (𝜑𝑆 ⊆ ℂ)
fsumcllem.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
fsumcllem.3 (𝜑𝐴 ∈ Fin)
fsumcllem.4 ((𝜑𝑘𝐴) → 𝐵𝑆)
fsumcllem.5 (𝜑 → 0 ∈ 𝑆)
Assertion
Ref Expression
fsumcllem (𝜑 → Σ𝑘𝐴 𝐵𝑆)
Distinct variable groups:   𝐴,𝑘,𝑥,𝑦   𝑥,𝐵,𝑦   𝑆,𝑘,𝑥,𝑦   𝜑,𝑘,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumcllem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . 5 ((𝜑𝐴 = ∅) → 𝐴 = ∅)
21sumeq1d 11677 . . . 4 ((𝜑𝐴 = ∅) → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
3 sum0 11699 . . . 4 Σ𝑘 ∈ ∅ 𝐵 = 0
42, 3eqtrdi 2254 . . 3 ((𝜑𝐴 = ∅) → Σ𝑘𝐴 𝐵 = 0)
5 fsumcllem.5 . . . 4 (𝜑 → 0 ∈ 𝑆)
65adantr 276 . . 3 ((𝜑𝐴 = ∅) → 0 ∈ 𝑆)
74, 6eqeltrd 2282 . 2 ((𝜑𝐴 = ∅) → Σ𝑘𝐴 𝐵𝑆)
8 fsumcllem.1 . . . 4 (𝜑𝑆 ⊆ ℂ)
98adantr 276 . . 3 ((𝜑 ∧ ∃𝑧 𝑧𝐴) → 𝑆 ⊆ ℂ)
10 fsumcllem.2 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
1110adantlr 477 . . 3 (((𝜑 ∧ ∃𝑧 𝑧𝐴) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
12 fsumcllem.3 . . . 4 (𝜑𝐴 ∈ Fin)
1312adantr 276 . . 3 ((𝜑 ∧ ∃𝑧 𝑧𝐴) → 𝐴 ∈ Fin)
14 fsumcllem.4 . . . 4 ((𝜑𝑘𝐴) → 𝐵𝑆)
1514adantlr 477 . . 3 (((𝜑 ∧ ∃𝑧 𝑧𝐴) ∧ 𝑘𝐴) → 𝐵𝑆)
16 n0r 3474 . . . 4 (∃𝑧 𝑧𝐴𝐴 ≠ ∅)
1716adantl 277 . . 3 ((𝜑 ∧ ∃𝑧 𝑧𝐴) → 𝐴 ≠ ∅)
189, 11, 13, 15, 17fsumcl2lem 11709 . 2 ((𝜑 ∧ ∃𝑧 𝑧𝐴) → Σ𝑘𝐴 𝐵𝑆)
19 fin0or 6983 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ∃𝑧 𝑧𝐴))
2012, 19syl 14 . 2 (𝜑 → (𝐴 = ∅ ∨ ∃𝑧 𝑧𝐴))
217, 18, 20mpjaodan 800 1 (𝜑 → Σ𝑘𝐴 𝐵𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710   = wceq 1373  wex 1515  wcel 2176  wne 2376  wss 3166  c0 3460  (class class class)co 5944  Fincfn 6827  cc 7923  0cc0 7925   + caddc 7928  Σcsu 11664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-seqfrec 10593  df-exp 10684  df-ihash 10921  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-sumdc 11665
This theorem is referenced by:  fsumcl  11711  fsumrecl  11712  fsumzcl  11713  fsumnn0cl  11714  fsumge0  11770  plymullem  15222
  Copyright terms: Public domain W3C validator