ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumcllem GIF version

Theorem fsumcllem 11681
Description: - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 3-Jun-2014.)
Hypotheses
Ref Expression
fsumcllem.1 (𝜑𝑆 ⊆ ℂ)
fsumcllem.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
fsumcllem.3 (𝜑𝐴 ∈ Fin)
fsumcllem.4 ((𝜑𝑘𝐴) → 𝐵𝑆)
fsumcllem.5 (𝜑 → 0 ∈ 𝑆)
Assertion
Ref Expression
fsumcllem (𝜑 → Σ𝑘𝐴 𝐵𝑆)
Distinct variable groups:   𝐴,𝑘,𝑥,𝑦   𝑥,𝐵,𝑦   𝑆,𝑘,𝑥,𝑦   𝜑,𝑘,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumcllem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . 5 ((𝜑𝐴 = ∅) → 𝐴 = ∅)
21sumeq1d 11648 . . . 4 ((𝜑𝐴 = ∅) → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
3 sum0 11670 . . . 4 Σ𝑘 ∈ ∅ 𝐵 = 0
42, 3eqtrdi 2253 . . 3 ((𝜑𝐴 = ∅) → Σ𝑘𝐴 𝐵 = 0)
5 fsumcllem.5 . . . 4 (𝜑 → 0 ∈ 𝑆)
65adantr 276 . . 3 ((𝜑𝐴 = ∅) → 0 ∈ 𝑆)
74, 6eqeltrd 2281 . 2 ((𝜑𝐴 = ∅) → Σ𝑘𝐴 𝐵𝑆)
8 fsumcllem.1 . . . 4 (𝜑𝑆 ⊆ ℂ)
98adantr 276 . . 3 ((𝜑 ∧ ∃𝑧 𝑧𝐴) → 𝑆 ⊆ ℂ)
10 fsumcllem.2 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
1110adantlr 477 . . 3 (((𝜑 ∧ ∃𝑧 𝑧𝐴) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
12 fsumcllem.3 . . . 4 (𝜑𝐴 ∈ Fin)
1312adantr 276 . . 3 ((𝜑 ∧ ∃𝑧 𝑧𝐴) → 𝐴 ∈ Fin)
14 fsumcllem.4 . . . 4 ((𝜑𝑘𝐴) → 𝐵𝑆)
1514adantlr 477 . . 3 (((𝜑 ∧ ∃𝑧 𝑧𝐴) ∧ 𝑘𝐴) → 𝐵𝑆)
16 n0r 3473 . . . 4 (∃𝑧 𝑧𝐴𝐴 ≠ ∅)
1716adantl 277 . . 3 ((𝜑 ∧ ∃𝑧 𝑧𝐴) → 𝐴 ≠ ∅)
189, 11, 13, 15, 17fsumcl2lem 11680 . 2 ((𝜑 ∧ ∃𝑧 𝑧𝐴) → Σ𝑘𝐴 𝐵𝑆)
19 fin0or 6982 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ∃𝑧 𝑧𝐴))
2012, 19syl 14 . 2 (𝜑 → (𝐴 = ∅ ∨ ∃𝑧 𝑧𝐴))
217, 18, 20mpjaodan 799 1 (𝜑 → Σ𝑘𝐴 𝐵𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1372  wex 1514  wcel 2175  wne 2375  wss 3165  c0 3459  (class class class)co 5943  Fincfn 6826  cc 7922  0cc0 7924   + caddc 7927  Σcsu 11635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-frec 6476  df-1o 6501  df-oadd 6505  df-er 6619  df-en 6827  df-dom 6828  df-fin 6829  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-fz 10130  df-fzo 10264  df-seqfrec 10591  df-exp 10682  df-ihash 10919  df-cj 11124  df-re 11125  df-im 11126  df-rsqrt 11280  df-abs 11281  df-clim 11561  df-sumdc 11636
This theorem is referenced by:  fsumcl  11682  fsumrecl  11683  fsumzcl  11684  fsumnn0cl  11685  fsumge0  11741  plymullem  15193
  Copyright terms: Public domain W3C validator