Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fsumcllem | GIF version |
Description: - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 3-Jun-2014.) |
Ref | Expression |
---|---|
fsumcllem.1 | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
fsumcllem.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
fsumcllem.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsumcllem.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) |
fsumcllem.5 | ⊢ (𝜑 → 0 ∈ 𝑆) |
Ref | Expression |
---|---|
fsumcllem | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = ∅) → 𝐴 = ∅) | |
2 | 1 | sumeq1d 11342 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = ∅) → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵) |
3 | sum0 11364 | . . . 4 ⊢ Σ𝑘 ∈ ∅ 𝐵 = 0 | |
4 | 2, 3 | eqtrdi 2224 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = ∅) → Σ𝑘 ∈ 𝐴 𝐵 = 0) |
5 | fsumcllem.5 | . . . 4 ⊢ (𝜑 → 0 ∈ 𝑆) | |
6 | 5 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = ∅) → 0 ∈ 𝑆) |
7 | 4, 6 | eqeltrd 2252 | . 2 ⊢ ((𝜑 ∧ 𝐴 = ∅) → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
8 | fsumcllem.1 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
9 | 8 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ ∃𝑧 𝑧 ∈ 𝐴) → 𝑆 ⊆ ℂ) |
10 | fsumcllem.2 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
11 | 10 | adantlr 477 | . . 3 ⊢ (((𝜑 ∧ ∃𝑧 𝑧 ∈ 𝐴) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
12 | fsumcllem.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
13 | 12 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ ∃𝑧 𝑧 ∈ 𝐴) → 𝐴 ∈ Fin) |
14 | fsumcllem.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) | |
15 | 14 | adantlr 477 | . . 3 ⊢ (((𝜑 ∧ ∃𝑧 𝑧 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) |
16 | n0r 3434 | . . . 4 ⊢ (∃𝑧 𝑧 ∈ 𝐴 → 𝐴 ≠ ∅) | |
17 | 16 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ ∃𝑧 𝑧 ∈ 𝐴) → 𝐴 ≠ ∅) |
18 | 9, 11, 13, 15, 17 | fsumcl2lem 11374 | . 2 ⊢ ((𝜑 ∧ ∃𝑧 𝑧 ∈ 𝐴) → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
19 | fin0or 6876 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ∃𝑧 𝑧 ∈ 𝐴)) | |
20 | 12, 19 | syl 14 | . 2 ⊢ (𝜑 → (𝐴 = ∅ ∨ ∃𝑧 𝑧 ∈ 𝐴)) |
21 | 7, 18, 20 | mpjaodan 798 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 708 = wceq 1353 ∃wex 1490 ∈ wcel 2146 ≠ wne 2345 ⊆ wss 3127 ∅c0 3420 (class class class)co 5865 Fincfn 6730 ℂcc 7784 0cc0 7786 + caddc 7789 Σcsu 11329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 ax-arch 7905 ax-caucvg 7906 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-isom 5217 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-irdg 6361 df-frec 6382 df-1o 6407 df-oadd 6411 df-er 6525 df-en 6731 df-dom 6732 df-fin 6733 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8603 df-inn 8893 df-2 8951 df-3 8952 df-4 8953 df-n0 9150 df-z 9227 df-uz 9502 df-q 9593 df-rp 9625 df-fz 9980 df-fzo 10113 df-seqfrec 10416 df-exp 10490 df-ihash 10724 df-cj 10819 df-re 10820 df-im 10821 df-rsqrt 10975 df-abs 10976 df-clim 11255 df-sumdc 11330 |
This theorem is referenced by: fsumcl 11376 fsumrecl 11377 fsumzcl 11378 fsumnn0cl 11379 fsumge0 11435 |
Copyright terms: Public domain | W3C validator |