| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsumcllem | GIF version | ||
| Description: - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 3-Jun-2014.) |
| Ref | Expression |
|---|---|
| fsumcllem.1 | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| fsumcllem.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| fsumcllem.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fsumcllem.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) |
| fsumcllem.5 | ⊢ (𝜑 → 0 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| fsumcllem | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = ∅) → 𝐴 = ∅) | |
| 2 | 1 | sumeq1d 11677 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = ∅) → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵) |
| 3 | sum0 11699 | . . . 4 ⊢ Σ𝑘 ∈ ∅ 𝐵 = 0 | |
| 4 | 2, 3 | eqtrdi 2254 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = ∅) → Σ𝑘 ∈ 𝐴 𝐵 = 0) |
| 5 | fsumcllem.5 | . . . 4 ⊢ (𝜑 → 0 ∈ 𝑆) | |
| 6 | 5 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = ∅) → 0 ∈ 𝑆) |
| 7 | 4, 6 | eqeltrd 2282 | . 2 ⊢ ((𝜑 ∧ 𝐴 = ∅) → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| 8 | fsumcllem.1 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
| 9 | 8 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ ∃𝑧 𝑧 ∈ 𝐴) → 𝑆 ⊆ ℂ) |
| 10 | fsumcllem.2 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
| 11 | 10 | adantlr 477 | . . 3 ⊢ (((𝜑 ∧ ∃𝑧 𝑧 ∈ 𝐴) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 12 | fsumcllem.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 13 | 12 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ ∃𝑧 𝑧 ∈ 𝐴) → 𝐴 ∈ Fin) |
| 14 | fsumcllem.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) | |
| 15 | 14 | adantlr 477 | . . 3 ⊢ (((𝜑 ∧ ∃𝑧 𝑧 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) |
| 16 | n0r 3474 | . . . 4 ⊢ (∃𝑧 𝑧 ∈ 𝐴 → 𝐴 ≠ ∅) | |
| 17 | 16 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ ∃𝑧 𝑧 ∈ 𝐴) → 𝐴 ≠ ∅) |
| 18 | 9, 11, 13, 15, 17 | fsumcl2lem 11709 | . 2 ⊢ ((𝜑 ∧ ∃𝑧 𝑧 ∈ 𝐴) → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| 19 | fin0or 6983 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ∃𝑧 𝑧 ∈ 𝐴)) | |
| 20 | 12, 19 | syl 14 | . 2 ⊢ (𝜑 → (𝐴 = ∅ ∨ ∃𝑧 𝑧 ∈ 𝐴)) |
| 21 | 7, 18, 20 | mpjaodan 800 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 710 = wceq 1373 ∃wex 1515 ∈ wcel 2176 ≠ wne 2376 ⊆ wss 3166 ∅c0 3460 (class class class)co 5944 Fincfn 6827 ℂcc 7923 0cc0 7925 + caddc 7928 Σcsu 11664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 ax-caucvg 8045 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-isom 5280 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-frec 6477 df-1o 6502 df-oadd 6506 df-er 6620 df-en 6828 df-dom 6829 df-fin 6830 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-n0 9296 df-z 9373 df-uz 9649 df-q 9741 df-rp 9776 df-fz 10131 df-fzo 10265 df-seqfrec 10593 df-exp 10684 df-ihash 10921 df-cj 11153 df-re 11154 df-im 11155 df-rsqrt 11309 df-abs 11310 df-clim 11590 df-sumdc 11665 |
| This theorem is referenced by: fsumcl 11711 fsumrecl 11712 fsumzcl 11713 fsumnn0cl 11714 fsumge0 11770 plymullem 15222 |
| Copyright terms: Public domain | W3C validator |