| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elqsn0 | GIF version | ||
| Description: A quotient set doesn't contain the empty set. (Contributed by NM, 24-Aug-1995.) |
| Ref | Expression |
|---|---|
| elqsn0 | ⊢ ((dom 𝑅 = 𝐴 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → 𝐵 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elqsn0m 6689 | . 2 ⊢ ((dom 𝑅 = 𝐴 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → ∃𝑥 𝑥 ∈ 𝐵) | |
| 2 | n0r 3473 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐵 → 𝐵 ≠ ∅) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ ((dom 𝑅 = 𝐴 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → 𝐵 ≠ ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∃wex 1514 ∈ wcel 2175 ≠ wne 2375 ∅c0 3459 dom cdm 4674 / cqs 6618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-xp 4680 df-cnv 4682 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-ec 6621 df-qs 6625 |
| This theorem is referenced by: 0nnq 7476 0nsr 7861 |
| Copyright terms: Public domain | W3C validator |