ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elqsn0 GIF version

Theorem elqsn0 6594
Description: A quotient set doesn't contain the empty set. (Contributed by NM, 24-Aug-1995.)
Assertion
Ref Expression
elqsn0 ((dom 𝑅 = 𝐴𝐵 ∈ (𝐴 / 𝑅)) → 𝐵 ≠ ∅)

Proof of Theorem elqsn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elqsn0m 6593 . 2 ((dom 𝑅 = 𝐴𝐵 ∈ (𝐴 / 𝑅)) → ∃𝑥 𝑥𝐵)
2 n0r 3434 . 2 (∃𝑥 𝑥𝐵𝐵 ≠ ∅)
31, 2syl 14 1 ((dom 𝑅 = 𝐴𝐵 ∈ (𝐴 / 𝑅)) → 𝐵 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wex 1490  wcel 2146  wne 2345  c0 3420  dom cdm 4620   / cqs 6524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-xp 4626  df-cnv 4628  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-ec 6527  df-qs 6531
This theorem is referenced by:  0nnq  7338  0nsr  7723
  Copyright terms: Public domain W3C validator