Proof of Theorem suppssov1
Step | Hyp | Ref
| Expression |
1 | | suppssov1.a |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ 𝑉) |
2 | | elex 2741 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
3 | 1, 2 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ V) |
4 | 3 | adantr 274 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴 ∈ V) |
5 | | eldifsni 3712 |
. . . . . . . 8
⊢ ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → (𝐴𝑂𝐵) ≠ 𝑍) |
6 | | oveq2 5861 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝐵 → (𝑌𝑂𝑣) = (𝑌𝑂𝐵)) |
7 | 6 | eqeq1d 2179 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝐵 → ((𝑌𝑂𝑣) = 𝑍 ↔ (𝑌𝑂𝐵) = 𝑍)) |
8 | | suppssov1.o |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍) |
9 | 8 | ralrimiva 2543 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑣 ∈ 𝑅 (𝑌𝑂𝑣) = 𝑍) |
10 | 9 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ∀𝑣 ∈ 𝑅 (𝑌𝑂𝑣) = 𝑍) |
11 | | suppssov1.b |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐵 ∈ 𝑅) |
12 | 7, 10, 11 | rspcdva 2839 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑌𝑂𝐵) = 𝑍) |
13 | | oveq1 5860 |
. . . . . . . . . . 11
⊢ (𝐴 = 𝑌 → (𝐴𝑂𝐵) = (𝑌𝑂𝐵)) |
14 | 13 | eqeq1d 2179 |
. . . . . . . . . 10
⊢ (𝐴 = 𝑌 → ((𝐴𝑂𝐵) = 𝑍 ↔ (𝑌𝑂𝐵) = 𝑍)) |
15 | 12, 14 | syl5ibrcom 156 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴 = 𝑌 → (𝐴𝑂𝐵) = 𝑍)) |
16 | 15 | necon3d 2384 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝐴𝑂𝐵) ≠ 𝑍 → 𝐴 ≠ 𝑌)) |
17 | 5, 16 | syl5 32 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → 𝐴 ≠ 𝑌)) |
18 | 17 | imp 123 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴 ≠ 𝑌) |
19 | | eldifsn 3710 |
. . . . . 6
⊢ (𝐴 ∈ (V ∖ {𝑌}) ↔ (𝐴 ∈ V ∧ 𝐴 ≠ 𝑌)) |
20 | 4, 18, 19 | sylanbrc 415 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴 ∈ (V ∖ {𝑌})) |
21 | 20 | ex 114 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → 𝐴 ∈ (V ∖ {𝑌}))) |
22 | 21 | ss2rabdv 3228 |
. . 3
⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})} ⊆ {𝑥 ∈ 𝐷 ∣ 𝐴 ∈ (V ∖ {𝑌})}) |
23 | | eqid 2170 |
. . . 4
⊢ (𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) = (𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) |
24 | 23 | mptpreima 5104 |
. . 3
⊢ (◡(𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) “ (V ∖ {𝑍})) = {𝑥 ∈ 𝐷 ∣ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})} |
25 | | eqid 2170 |
. . . 4
⊢ (𝑥 ∈ 𝐷 ↦ 𝐴) = (𝑥 ∈ 𝐷 ↦ 𝐴) |
26 | 25 | mptpreima 5104 |
. . 3
⊢ (◡(𝑥 ∈ 𝐷 ↦ 𝐴) “ (V ∖ {𝑌})) = {𝑥 ∈ 𝐷 ∣ 𝐴 ∈ (V ∖ {𝑌})} |
27 | 22, 24, 26 | 3sstr4g 3190 |
. 2
⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) “ (V ∖ {𝑍})) ⊆ (◡(𝑥 ∈ 𝐷 ↦ 𝐴) “ (V ∖ {𝑌}))) |
28 | | suppssov1.s |
. 2
⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ 𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿) |
29 | 27, 28 | sstrd 3157 |
1
⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) “ (V ∖ {𝑍})) ⊆ 𝐿) |