ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suppssov1 GIF version

Theorem suppssov1 6221
Description: Formula building theorem for support restrictions: operator with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
suppssov1.s (𝜑 → ((𝑥𝐷𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿)
suppssov1.o ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
suppssov1.a ((𝜑𝑥𝐷) → 𝐴𝑉)
suppssov1.b ((𝜑𝑥𝐷) → 𝐵𝑅)
Assertion
Ref Expression
suppssov1 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) “ (V ∖ {𝑍})) ⊆ 𝐿)
Distinct variable groups:   𝜑,𝑣   𝜑,𝑥   𝑣,𝐵   𝑣,𝑂   𝑣,𝑅   𝑣,𝑌   𝑥,𝑌   𝑣,𝑍   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥,𝑣)   𝐵(𝑥)   𝐷(𝑥,𝑣)   𝑅(𝑥)   𝐿(𝑥,𝑣)   𝑂(𝑥)   𝑉(𝑥,𝑣)

Proof of Theorem suppssov1
StepHypRef Expression
1 suppssov1.a . . . . . . . 8 ((𝜑𝑥𝐷) → 𝐴𝑉)
2 elex 2811 . . . . . . . 8 (𝐴𝑉𝐴 ∈ V)
31, 2syl 14 . . . . . . 7 ((𝜑𝑥𝐷) → 𝐴 ∈ V)
43adantr 276 . . . . . 6 (((𝜑𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴 ∈ V)
5 eldifsni 3797 . . . . . . . 8 ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → (𝐴𝑂𝐵) ≠ 𝑍)
6 oveq2 6015 . . . . . . . . . . . 12 (𝑣 = 𝐵 → (𝑌𝑂𝑣) = (𝑌𝑂𝐵))
76eqeq1d 2238 . . . . . . . . . . 11 (𝑣 = 𝐵 → ((𝑌𝑂𝑣) = 𝑍 ↔ (𝑌𝑂𝐵) = 𝑍))
8 suppssov1.o . . . . . . . . . . . . 13 ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
98ralrimiva 2603 . . . . . . . . . . . 12 (𝜑 → ∀𝑣𝑅 (𝑌𝑂𝑣) = 𝑍)
109adantr 276 . . . . . . . . . . 11 ((𝜑𝑥𝐷) → ∀𝑣𝑅 (𝑌𝑂𝑣) = 𝑍)
11 suppssov1.b . . . . . . . . . . 11 ((𝜑𝑥𝐷) → 𝐵𝑅)
127, 10, 11rspcdva 2912 . . . . . . . . . 10 ((𝜑𝑥𝐷) → (𝑌𝑂𝐵) = 𝑍)
13 oveq1 6014 . . . . . . . . . . 11 (𝐴 = 𝑌 → (𝐴𝑂𝐵) = (𝑌𝑂𝐵))
1413eqeq1d 2238 . . . . . . . . . 10 (𝐴 = 𝑌 → ((𝐴𝑂𝐵) = 𝑍 ↔ (𝑌𝑂𝐵) = 𝑍))
1512, 14syl5ibrcom 157 . . . . . . . . 9 ((𝜑𝑥𝐷) → (𝐴 = 𝑌 → (𝐴𝑂𝐵) = 𝑍))
1615necon3d 2444 . . . . . . . 8 ((𝜑𝑥𝐷) → ((𝐴𝑂𝐵) ≠ 𝑍𝐴𝑌))
175, 16syl5 32 . . . . . . 7 ((𝜑𝑥𝐷) → ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → 𝐴𝑌))
1817imp 124 . . . . . 6 (((𝜑𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴𝑌)
19 eldifsn 3795 . . . . . 6 (𝐴 ∈ (V ∖ {𝑌}) ↔ (𝐴 ∈ V ∧ 𝐴𝑌))
204, 18, 19sylanbrc 417 . . . . 5 (((𝜑𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴 ∈ (V ∖ {𝑌}))
2120ex 115 . . . 4 ((𝜑𝑥𝐷) → ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → 𝐴 ∈ (V ∖ {𝑌})))
2221ss2rabdv 3305 . . 3 (𝜑 → {𝑥𝐷 ∣ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})} ⊆ {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})})
23 eqid 2229 . . . 4 (𝑥𝐷 ↦ (𝐴𝑂𝐵)) = (𝑥𝐷 ↦ (𝐴𝑂𝐵))
2423mptpreima 5222 . . 3 ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) “ (V ∖ {𝑍})) = {𝑥𝐷 ∣ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})}
25 eqid 2229 . . . 4 (𝑥𝐷𝐴) = (𝑥𝐷𝐴)
2625mptpreima 5222 . . 3 ((𝑥𝐷𝐴) “ (V ∖ {𝑌})) = {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})}
2722, 24, 263sstr4g 3267 . 2 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) “ (V ∖ {𝑍})) ⊆ ((𝑥𝐷𝐴) “ (V ∖ {𝑌})))
28 suppssov1.s . 2 (𝜑 → ((𝑥𝐷𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿)
2927, 28sstrd 3234 1 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) “ (V ∖ {𝑍})) ⊆ 𝐿)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wne 2400  wral 2508  {crab 2512  Vcvv 2799  cdif 3194  wss 3197  {csn 3666  cmpt 4145  ccnv 4718  cima 4722  (class class class)co 6007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-xp 4725  df-rel 4726  df-cnv 4727  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fv 5326  df-ov 6010
This theorem is referenced by:  suppssof1  6242
  Copyright terms: Public domain W3C validator