| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodindp1 | GIF version | ||
| Description: Two independent (non-colinear) vectors have nonzero sum. (Contributed by NM, 22-Apr-2015.) |
| Ref | Expression |
|---|---|
| lmodindp1.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodindp1.p | ⊢ + = (+g‘𝑊) |
| lmodindp1.o | ⊢ 0 = (0g‘𝑊) |
| lmodindp1.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lmodindp1.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lmodindp1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lmodindp1.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| lmodindp1.q | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| Ref | Expression |
|---|---|
| lmodindp1 | ⊢ (𝜑 → (𝑋 + 𝑌) ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodindp1.q | . 2 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 2 | lmodindp1.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 3 | lmodindp1.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 4 | lmodindp1.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑊) | |
| 5 | eqid 2206 | . . . . . . . . 9 ⊢ (invg‘𝑊) = (invg‘𝑊) | |
| 6 | lmodindp1.n | . . . . . . . . 9 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 7 | 4, 5, 6 | lspsnneg 14257 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{((invg‘𝑊)‘𝑋)}) = (𝑁‘{𝑋})) |
| 8 | 2, 3, 7 | syl2anc 411 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{((invg‘𝑊)‘𝑋)}) = (𝑁‘{𝑋})) |
| 9 | 8 | eqcomd 2212 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{((invg‘𝑊)‘𝑋)})) |
| 10 | 9 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{((invg‘𝑊)‘𝑋)})) |
| 11 | lmodgrp 14131 | . . . . . . . . . 10 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
| 12 | 2, 11 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → 𝑊 ∈ Grp) |
| 13 | lmodindp1.y | . . . . . . . . 9 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 14 | lmodindp1.p | . . . . . . . . . 10 ⊢ + = (+g‘𝑊) | |
| 15 | lmodindp1.o | . . . . . . . . . 10 ⊢ 0 = (0g‘𝑊) | |
| 16 | 4, 14, 15, 5 | grpinvid1 13459 | . . . . . . . . 9 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (((invg‘𝑊)‘𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 0 )) |
| 17 | 12, 3, 13, 16 | syl3anc 1250 | . . . . . . . 8 ⊢ (𝜑 → (((invg‘𝑊)‘𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 0 )) |
| 18 | 17 | biimpar 297 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → ((invg‘𝑊)‘𝑋) = 𝑌) |
| 19 | 18 | sneqd 3651 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → {((invg‘𝑊)‘𝑋)} = {𝑌}) |
| 20 | 19 | fveq2d 5593 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → (𝑁‘{((invg‘𝑊)‘𝑋)}) = (𝑁‘{𝑌})) |
| 21 | 10, 20 | eqtrd 2239 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
| 22 | 21 | ex 115 | . . 3 ⊢ (𝜑 → ((𝑋 + 𝑌) = 0 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) |
| 23 | 22 | necon3d 2421 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) → (𝑋 + 𝑌) ≠ 0 )) |
| 24 | 1, 23 | mpd 13 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ≠ 0 ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 {csn 3638 ‘cfv 5280 (class class class)co 5957 Basecbs 12907 +gcplusg 12984 0gc0g 13163 Grpcgrp 13407 invgcminusg 13408 LModclmod 14124 LSpanclspn 14223 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-pre-ltirr 8057 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-pnf 8129 df-mnf 8130 df-ltxr 8132 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-ndx 12910 df-slot 12911 df-base 12913 df-sets 12914 df-plusg 12997 df-mulr 12998 df-sca 13000 df-vsca 13001 df-0g 13165 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-grp 13410 df-minusg 13411 df-sbg 13412 df-mgp 13758 df-ur 13797 df-ring 13835 df-lmod 14126 df-lssm 14190 df-lsp 14224 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |