Step | Hyp | Ref
| Expression |
1 | | pceu.7 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) |
2 | 1 | simprd 113 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑦 ∈ ℕ) |
3 | 2 | nncnd 8867 |
. . . . . . . . 9
⊢ (𝜑 → 𝑦 ∈ ℂ) |
4 | | pceu.9 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ)) |
5 | 4 | simpld 111 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑠 ∈ ℤ) |
6 | 5 | zcnd 9310 |
. . . . . . . . 9
⊢ (𝜑 → 𝑠 ∈ ℂ) |
7 | 3, 6 | mulcomd 7916 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 · 𝑠) = (𝑠 · 𝑦)) |
8 | | pceu.10 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 = (𝑠 / 𝑡)) |
9 | | pceu.8 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 = (𝑥 / 𝑦)) |
10 | 8, 9 | eqtr3d 2200 |
. . . . . . . . 9
⊢ (𝜑 → (𝑠 / 𝑡) = (𝑥 / 𝑦)) |
11 | 4 | simprd 113 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑡 ∈ ℕ) |
12 | 11 | nncnd 8867 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑡 ∈ ℂ) |
13 | 1 | simpld 111 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑥 ∈ ℤ) |
14 | 13 | zcnd 9310 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑥 ∈ ℂ) |
15 | 11 | nnap0d 8899 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑡 # 0) |
16 | 2 | nnap0d 8899 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑦 # 0) |
17 | 6, 12, 14, 3, 15, 16 | divmuleqapd 8725 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑠 / 𝑡) = (𝑥 / 𝑦) ↔ (𝑠 · 𝑦) = (𝑥 · 𝑡))) |
18 | 10, 17 | mpbid 146 |
. . . . . . . 8
⊢ (𝜑 → (𝑠 · 𝑦) = (𝑥 · 𝑡)) |
19 | 7, 18 | eqtrd 2198 |
. . . . . . 7
⊢ (𝜑 → (𝑦 · 𝑠) = (𝑥 · 𝑡)) |
20 | 19 | breq2d 3993 |
. . . . . 6
⊢ (𝜑 → ((𝑃↑𝑧) ∥ (𝑦 · 𝑠) ↔ (𝑃↑𝑧) ∥ (𝑥 · 𝑡))) |
21 | 20 | rabbidv 2714 |
. . . . 5
⊢ (𝜑 → {𝑧 ∈ ℕ0 ∣ (𝑃↑𝑧) ∥ (𝑦 · 𝑠)} = {𝑧 ∈ ℕ0 ∣ (𝑃↑𝑧) ∥ (𝑥 · 𝑡)}) |
22 | | oveq2 5849 |
. . . . . . 7
⊢ (𝑛 = 𝑧 → (𝑃↑𝑛) = (𝑃↑𝑧)) |
23 | 22 | breq1d 3991 |
. . . . . 6
⊢ (𝑛 = 𝑧 → ((𝑃↑𝑛) ∥ (𝑦 · 𝑠) ↔ (𝑃↑𝑧) ∥ (𝑦 · 𝑠))) |
24 | 23 | cbvrabv 2724 |
. . . . 5
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ (𝑦 · 𝑠)} = {𝑧 ∈ ℕ0 ∣ (𝑃↑𝑧) ∥ (𝑦 · 𝑠)} |
25 | 22 | breq1d 3991 |
. . . . . 6
⊢ (𝑛 = 𝑧 → ((𝑃↑𝑛) ∥ (𝑥 · 𝑡) ↔ (𝑃↑𝑧) ∥ (𝑥 · 𝑡))) |
26 | 25 | cbvrabv 2724 |
. . . . 5
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ (𝑥 · 𝑡)} = {𝑧 ∈ ℕ0 ∣ (𝑃↑𝑧) ∥ (𝑥 · 𝑡)} |
27 | 21, 24, 26 | 3eqtr4g 2223 |
. . . 4
⊢ (𝜑 → {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑦 · 𝑠)} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑥 · 𝑡)}) |
28 | 27 | supeq1d 6948 |
. . 3
⊢ (𝜑 → sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < )) |
29 | | pceu.5 |
. . . 4
⊢ (𝜑 → 𝑃 ∈ ℙ) |
30 | 2 | nnzd 9308 |
. . . 4
⊢ (𝜑 → 𝑦 ∈ ℤ) |
31 | 2 | nnne0d 8898 |
. . . 4
⊢ (𝜑 → 𝑦 ≠ 0) |
32 | | pceu.6 |
. . . . 5
⊢ (𝜑 → 𝑁 ≠ 0) |
33 | 12, 15 | div0apd 8679 |
. . . . . . . 8
⊢ (𝜑 → (0 / 𝑡) = 0) |
34 | | oveq1 5848 |
. . . . . . . . 9
⊢ (𝑠 = 0 → (𝑠 / 𝑡) = (0 / 𝑡)) |
35 | 34 | eqeq1d 2174 |
. . . . . . . 8
⊢ (𝑠 = 0 → ((𝑠 / 𝑡) = 0 ↔ (0 / 𝑡) = 0)) |
36 | 33, 35 | syl5ibrcom 156 |
. . . . . . 7
⊢ (𝜑 → (𝑠 = 0 → (𝑠 / 𝑡) = 0)) |
37 | 8 | eqeq1d 2174 |
. . . . . . 7
⊢ (𝜑 → (𝑁 = 0 ↔ (𝑠 / 𝑡) = 0)) |
38 | 36, 37 | sylibrd 168 |
. . . . . 6
⊢ (𝜑 → (𝑠 = 0 → 𝑁 = 0)) |
39 | 38 | necon3d 2379 |
. . . . 5
⊢ (𝜑 → (𝑁 ≠ 0 → 𝑠 ≠ 0)) |
40 | 32, 39 | mpd 13 |
. . . 4
⊢ (𝜑 → 𝑠 ≠ 0) |
41 | | pcval.2 |
. . . . 5
⊢ 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ) |
42 | | pceu.3 |
. . . . 5
⊢ 𝑈 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) |
43 | | eqid 2165 |
. . . . 5
⊢
sup({𝑛 ∈
ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < ) |
44 | 41, 42, 43 | pcpremul 12221 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0) ∧ (𝑠 ∈ ℤ ∧ 𝑠 ≠ 0)) → (𝑇 + 𝑈) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < )) |
45 | 29, 30, 31, 5, 40, 44 | syl122anc 1237 |
. . 3
⊢ (𝜑 → (𝑇 + 𝑈) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < )) |
46 | 3, 16 | div0apd 8679 |
. . . . . . . 8
⊢ (𝜑 → (0 / 𝑦) = 0) |
47 | | oveq1 5848 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝑥 / 𝑦) = (0 / 𝑦)) |
48 | 47 | eqeq1d 2174 |
. . . . . . . 8
⊢ (𝑥 = 0 → ((𝑥 / 𝑦) = 0 ↔ (0 / 𝑦) = 0)) |
49 | 46, 48 | syl5ibrcom 156 |
. . . . . . 7
⊢ (𝜑 → (𝑥 = 0 → (𝑥 / 𝑦) = 0)) |
50 | 9 | eqeq1d 2174 |
. . . . . . 7
⊢ (𝜑 → (𝑁 = 0 ↔ (𝑥 / 𝑦) = 0)) |
51 | 49, 50 | sylibrd 168 |
. . . . . 6
⊢ (𝜑 → (𝑥 = 0 → 𝑁 = 0)) |
52 | 51 | necon3d 2379 |
. . . . 5
⊢ (𝜑 → (𝑁 ≠ 0 → 𝑥 ≠ 0)) |
53 | 32, 52 | mpd 13 |
. . . 4
⊢ (𝜑 → 𝑥 ≠ 0) |
54 | 11 | nnzd 9308 |
. . . 4
⊢ (𝜑 → 𝑡 ∈ ℤ) |
55 | 11 | nnne0d 8898 |
. . . 4
⊢ (𝜑 → 𝑡 ≠ 0) |
56 | | pcval.1 |
. . . . 5
⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) |
57 | | pceu.4 |
. . . . 5
⊢ 𝑉 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ) |
58 | | eqid 2165 |
. . . . 5
⊢
sup({𝑛 ∈
ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < ) |
59 | 56, 57, 58 | pcpremul 12221 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ (𝑡 ∈ ℤ ∧ 𝑡 ≠ 0)) → (𝑆 + 𝑉) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < )) |
60 | 29, 13, 53, 54, 55, 59 | syl122anc 1237 |
. . 3
⊢ (𝜑 → (𝑆 + 𝑉) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < )) |
61 | 28, 45, 60 | 3eqtr4d 2208 |
. 2
⊢ (𝜑 → (𝑇 + 𝑈) = (𝑆 + 𝑉)) |
62 | | prmuz2 12059 |
. . . . . 6
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
(ℤ≥‘2)) |
63 | 29, 62 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈
(ℤ≥‘2)) |
64 | | eqid 2165 |
. . . . . . 7
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦} |
65 | 64, 41 | pcprecl 12217 |
. . . . . 6
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → (𝑇 ∈ ℕ0 ∧ (𝑃↑𝑇) ∥ 𝑦)) |
66 | 65 | simpld 111 |
. . . . 5
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → 𝑇 ∈
ℕ0) |
67 | 63, 30, 31, 66 | syl12anc 1226 |
. . . 4
⊢ (𝜑 → 𝑇 ∈
ℕ0) |
68 | 67 | nn0cnd 9165 |
. . 3
⊢ (𝜑 → 𝑇 ∈ ℂ) |
69 | | eqid 2165 |
. . . . . . 7
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑠} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠} |
70 | 69, 42 | pcprecl 12217 |
. . . . . 6
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑠 ∈ ℤ ∧ 𝑠 ≠ 0)) → (𝑈 ∈ ℕ0 ∧ (𝑃↑𝑈) ∥ 𝑠)) |
71 | 70 | simpld 111 |
. . . . 5
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑠 ∈ ℤ ∧ 𝑠 ≠ 0)) → 𝑈 ∈
ℕ0) |
72 | 63, 5, 40, 71 | syl12anc 1226 |
. . . 4
⊢ (𝜑 → 𝑈 ∈
ℕ0) |
73 | 72 | nn0cnd 9165 |
. . 3
⊢ (𝜑 → 𝑈 ∈ ℂ) |
74 | | eqid 2165 |
. . . . . . 7
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑥} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥} |
75 | 74, 56 | pcprecl 12217 |
. . . . . 6
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑥)) |
76 | 75 | simpld 111 |
. . . . 5
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → 𝑆 ∈
ℕ0) |
77 | 63, 13, 53, 76 | syl12anc 1226 |
. . . 4
⊢ (𝜑 → 𝑆 ∈
ℕ0) |
78 | 77 | nn0cnd 9165 |
. . 3
⊢ (𝜑 → 𝑆 ∈ ℂ) |
79 | | eqid 2165 |
. . . . . . 7
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑡} |
80 | 79, 57 | pcprecl 12217 |
. . . . . 6
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑡 ∈ ℤ ∧ 𝑡 ≠ 0)) → (𝑉 ∈ ℕ0 ∧ (𝑃↑𝑉) ∥ 𝑡)) |
81 | 80 | simpld 111 |
. . . . 5
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑡 ∈ ℤ ∧ 𝑡 ≠ 0)) → 𝑉 ∈
ℕ0) |
82 | 63, 54, 55, 81 | syl12anc 1226 |
. . . 4
⊢ (𝜑 → 𝑉 ∈
ℕ0) |
83 | 82 | nn0cnd 9165 |
. . 3
⊢ (𝜑 → 𝑉 ∈ ℂ) |
84 | 68, 73, 78, 83 | addsubeq4d 8256 |
. 2
⊢ (𝜑 → ((𝑇 + 𝑈) = (𝑆 + 𝑉) ↔ (𝑆 − 𝑇) = (𝑈 − 𝑉))) |
85 | 61, 84 | mpbid 146 |
1
⊢ (𝜑 → (𝑆 − 𝑇) = (𝑈 − 𝑉)) |