| Step | Hyp | Ref
| Expression |
| 1 | | pceu.7 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) |
| 2 | 1 | simprd 114 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑦 ∈ ℕ) |
| 3 | 2 | nncnd 9021 |
. . . . . . . . 9
⊢ (𝜑 → 𝑦 ∈ ℂ) |
| 4 | | pceu.9 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ)) |
| 5 | 4 | simpld 112 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑠 ∈ ℤ) |
| 6 | 5 | zcnd 9466 |
. . . . . . . . 9
⊢ (𝜑 → 𝑠 ∈ ℂ) |
| 7 | 3, 6 | mulcomd 8065 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 · 𝑠) = (𝑠 · 𝑦)) |
| 8 | | pceu.10 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 = (𝑠 / 𝑡)) |
| 9 | | pceu.8 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 = (𝑥 / 𝑦)) |
| 10 | 8, 9 | eqtr3d 2231 |
. . . . . . . . 9
⊢ (𝜑 → (𝑠 / 𝑡) = (𝑥 / 𝑦)) |
| 11 | 4 | simprd 114 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑡 ∈ ℕ) |
| 12 | 11 | nncnd 9021 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑡 ∈ ℂ) |
| 13 | 1 | simpld 112 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑥 ∈ ℤ) |
| 14 | 13 | zcnd 9466 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑥 ∈ ℂ) |
| 15 | 11 | nnap0d 9053 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑡 # 0) |
| 16 | 2 | nnap0d 9053 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑦 # 0) |
| 17 | 6, 12, 14, 3, 15, 16 | divmuleqapd 8877 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑠 / 𝑡) = (𝑥 / 𝑦) ↔ (𝑠 · 𝑦) = (𝑥 · 𝑡))) |
| 18 | 10, 17 | mpbid 147 |
. . . . . . . 8
⊢ (𝜑 → (𝑠 · 𝑦) = (𝑥 · 𝑡)) |
| 19 | 7, 18 | eqtrd 2229 |
. . . . . . 7
⊢ (𝜑 → (𝑦 · 𝑠) = (𝑥 · 𝑡)) |
| 20 | 19 | breq2d 4046 |
. . . . . 6
⊢ (𝜑 → ((𝑃↑𝑧) ∥ (𝑦 · 𝑠) ↔ (𝑃↑𝑧) ∥ (𝑥 · 𝑡))) |
| 21 | 20 | rabbidv 2752 |
. . . . 5
⊢ (𝜑 → {𝑧 ∈ ℕ0 ∣ (𝑃↑𝑧) ∥ (𝑦 · 𝑠)} = {𝑧 ∈ ℕ0 ∣ (𝑃↑𝑧) ∥ (𝑥 · 𝑡)}) |
| 22 | | oveq2 5933 |
. . . . . . 7
⊢ (𝑛 = 𝑧 → (𝑃↑𝑛) = (𝑃↑𝑧)) |
| 23 | 22 | breq1d 4044 |
. . . . . 6
⊢ (𝑛 = 𝑧 → ((𝑃↑𝑛) ∥ (𝑦 · 𝑠) ↔ (𝑃↑𝑧) ∥ (𝑦 · 𝑠))) |
| 24 | 23 | cbvrabv 2762 |
. . . . 5
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ (𝑦 · 𝑠)} = {𝑧 ∈ ℕ0 ∣ (𝑃↑𝑧) ∥ (𝑦 · 𝑠)} |
| 25 | 22 | breq1d 4044 |
. . . . . 6
⊢ (𝑛 = 𝑧 → ((𝑃↑𝑛) ∥ (𝑥 · 𝑡) ↔ (𝑃↑𝑧) ∥ (𝑥 · 𝑡))) |
| 26 | 25 | cbvrabv 2762 |
. . . . 5
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ (𝑥 · 𝑡)} = {𝑧 ∈ ℕ0 ∣ (𝑃↑𝑧) ∥ (𝑥 · 𝑡)} |
| 27 | 21, 24, 26 | 3eqtr4g 2254 |
. . . 4
⊢ (𝜑 → {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑦 · 𝑠)} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑥 · 𝑡)}) |
| 28 | 27 | supeq1d 7062 |
. . 3
⊢ (𝜑 → sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < )) |
| 29 | | pceu.5 |
. . . 4
⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 30 | 2 | nnzd 9464 |
. . . 4
⊢ (𝜑 → 𝑦 ∈ ℤ) |
| 31 | 2 | nnne0d 9052 |
. . . 4
⊢ (𝜑 → 𝑦 ≠ 0) |
| 32 | | pceu.6 |
. . . . 5
⊢ (𝜑 → 𝑁 ≠ 0) |
| 33 | 12, 15 | div0apd 8831 |
. . . . . . . 8
⊢ (𝜑 → (0 / 𝑡) = 0) |
| 34 | | oveq1 5932 |
. . . . . . . . 9
⊢ (𝑠 = 0 → (𝑠 / 𝑡) = (0 / 𝑡)) |
| 35 | 34 | eqeq1d 2205 |
. . . . . . . 8
⊢ (𝑠 = 0 → ((𝑠 / 𝑡) = 0 ↔ (0 / 𝑡) = 0)) |
| 36 | 33, 35 | syl5ibrcom 157 |
. . . . . . 7
⊢ (𝜑 → (𝑠 = 0 → (𝑠 / 𝑡) = 0)) |
| 37 | 8 | eqeq1d 2205 |
. . . . . . 7
⊢ (𝜑 → (𝑁 = 0 ↔ (𝑠 / 𝑡) = 0)) |
| 38 | 36, 37 | sylibrd 169 |
. . . . . 6
⊢ (𝜑 → (𝑠 = 0 → 𝑁 = 0)) |
| 39 | 38 | necon3d 2411 |
. . . . 5
⊢ (𝜑 → (𝑁 ≠ 0 → 𝑠 ≠ 0)) |
| 40 | 32, 39 | mpd 13 |
. . . 4
⊢ (𝜑 → 𝑠 ≠ 0) |
| 41 | | pcval.2 |
. . . . 5
⊢ 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ) |
| 42 | | pceu.3 |
. . . . 5
⊢ 𝑈 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) |
| 43 | | eqid 2196 |
. . . . 5
⊢
sup({𝑛 ∈
ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < ) |
| 44 | 41, 42, 43 | pcpremul 12487 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0) ∧ (𝑠 ∈ ℤ ∧ 𝑠 ≠ 0)) → (𝑇 + 𝑈) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < )) |
| 45 | 29, 30, 31, 5, 40, 44 | syl122anc 1258 |
. . 3
⊢ (𝜑 → (𝑇 + 𝑈) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < )) |
| 46 | 3, 16 | div0apd 8831 |
. . . . . . . 8
⊢ (𝜑 → (0 / 𝑦) = 0) |
| 47 | | oveq1 5932 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝑥 / 𝑦) = (0 / 𝑦)) |
| 48 | 47 | eqeq1d 2205 |
. . . . . . . 8
⊢ (𝑥 = 0 → ((𝑥 / 𝑦) = 0 ↔ (0 / 𝑦) = 0)) |
| 49 | 46, 48 | syl5ibrcom 157 |
. . . . . . 7
⊢ (𝜑 → (𝑥 = 0 → (𝑥 / 𝑦) = 0)) |
| 50 | 9 | eqeq1d 2205 |
. . . . . . 7
⊢ (𝜑 → (𝑁 = 0 ↔ (𝑥 / 𝑦) = 0)) |
| 51 | 49, 50 | sylibrd 169 |
. . . . . 6
⊢ (𝜑 → (𝑥 = 0 → 𝑁 = 0)) |
| 52 | 51 | necon3d 2411 |
. . . . 5
⊢ (𝜑 → (𝑁 ≠ 0 → 𝑥 ≠ 0)) |
| 53 | 32, 52 | mpd 13 |
. . . 4
⊢ (𝜑 → 𝑥 ≠ 0) |
| 54 | 11 | nnzd 9464 |
. . . 4
⊢ (𝜑 → 𝑡 ∈ ℤ) |
| 55 | 11 | nnne0d 9052 |
. . . 4
⊢ (𝜑 → 𝑡 ≠ 0) |
| 56 | | pcval.1 |
. . . . 5
⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) |
| 57 | | pceu.4 |
. . . . 5
⊢ 𝑉 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ) |
| 58 | | eqid 2196 |
. . . . 5
⊢
sup({𝑛 ∈
ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < ) |
| 59 | 56, 57, 58 | pcpremul 12487 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ (𝑡 ∈ ℤ ∧ 𝑡 ≠ 0)) → (𝑆 + 𝑉) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < )) |
| 60 | 29, 13, 53, 54, 55, 59 | syl122anc 1258 |
. . 3
⊢ (𝜑 → (𝑆 + 𝑉) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < )) |
| 61 | 28, 45, 60 | 3eqtr4d 2239 |
. 2
⊢ (𝜑 → (𝑇 + 𝑈) = (𝑆 + 𝑉)) |
| 62 | | prmuz2 12324 |
. . . . . 6
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
(ℤ≥‘2)) |
| 63 | 29, 62 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈
(ℤ≥‘2)) |
| 64 | | eqid 2196 |
. . . . . . 7
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦} |
| 65 | 64, 41 | pcprecl 12483 |
. . . . . 6
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → (𝑇 ∈ ℕ0 ∧ (𝑃↑𝑇) ∥ 𝑦)) |
| 66 | 65 | simpld 112 |
. . . . 5
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → 𝑇 ∈
ℕ0) |
| 67 | 63, 30, 31, 66 | syl12anc 1247 |
. . . 4
⊢ (𝜑 → 𝑇 ∈
ℕ0) |
| 68 | 67 | nn0cnd 9321 |
. . 3
⊢ (𝜑 → 𝑇 ∈ ℂ) |
| 69 | | eqid 2196 |
. . . . . . 7
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑠} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠} |
| 70 | 69, 42 | pcprecl 12483 |
. . . . . 6
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑠 ∈ ℤ ∧ 𝑠 ≠ 0)) → (𝑈 ∈ ℕ0 ∧ (𝑃↑𝑈) ∥ 𝑠)) |
| 71 | 70 | simpld 112 |
. . . . 5
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑠 ∈ ℤ ∧ 𝑠 ≠ 0)) → 𝑈 ∈
ℕ0) |
| 72 | 63, 5, 40, 71 | syl12anc 1247 |
. . . 4
⊢ (𝜑 → 𝑈 ∈
ℕ0) |
| 73 | 72 | nn0cnd 9321 |
. . 3
⊢ (𝜑 → 𝑈 ∈ ℂ) |
| 74 | | eqid 2196 |
. . . . . . 7
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑥} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥} |
| 75 | 74, 56 | pcprecl 12483 |
. . . . . 6
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑥)) |
| 76 | 75 | simpld 112 |
. . . . 5
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → 𝑆 ∈
ℕ0) |
| 77 | 63, 13, 53, 76 | syl12anc 1247 |
. . . 4
⊢ (𝜑 → 𝑆 ∈
ℕ0) |
| 78 | 77 | nn0cnd 9321 |
. . 3
⊢ (𝜑 → 𝑆 ∈ ℂ) |
| 79 | | eqid 2196 |
. . . . . . 7
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑡} |
| 80 | 79, 57 | pcprecl 12483 |
. . . . . 6
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑡 ∈ ℤ ∧ 𝑡 ≠ 0)) → (𝑉 ∈ ℕ0 ∧ (𝑃↑𝑉) ∥ 𝑡)) |
| 81 | 80 | simpld 112 |
. . . . 5
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑡 ∈ ℤ ∧ 𝑡 ≠ 0)) → 𝑉 ∈
ℕ0) |
| 82 | 63, 54, 55, 81 | syl12anc 1247 |
. . . 4
⊢ (𝜑 → 𝑉 ∈
ℕ0) |
| 83 | 82 | nn0cnd 9321 |
. . 3
⊢ (𝜑 → 𝑉 ∈ ℂ) |
| 84 | 68, 73, 78, 83 | addsubeq4d 8405 |
. 2
⊢ (𝜑 → ((𝑇 + 𝑈) = (𝑆 + 𝑉) ↔ (𝑆 − 𝑇) = (𝑈 − 𝑉))) |
| 85 | 61, 84 | mpbid 147 |
1
⊢ (𝜑 → (𝑆 − 𝑇) = (𝑈 − 𝑉)) |