| Step | Hyp | Ref
 | Expression | 
| 1 |   | pceu.7 | 
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) | 
| 2 | 1 | simprd 114 | 
. . . . . . . . . 10
⊢ (𝜑 → 𝑦 ∈ ℕ) | 
| 3 | 2 | nncnd 9004 | 
. . . . . . . . 9
⊢ (𝜑 → 𝑦 ∈ ℂ) | 
| 4 |   | pceu.9 | 
. . . . . . . . . . 11
⊢ (𝜑 → (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ)) | 
| 5 | 4 | simpld 112 | 
. . . . . . . . . 10
⊢ (𝜑 → 𝑠 ∈ ℤ) | 
| 6 | 5 | zcnd 9449 | 
. . . . . . . . 9
⊢ (𝜑 → 𝑠 ∈ ℂ) | 
| 7 | 3, 6 | mulcomd 8048 | 
. . . . . . . 8
⊢ (𝜑 → (𝑦 · 𝑠) = (𝑠 · 𝑦)) | 
| 8 |   | pceu.10 | 
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 = (𝑠 / 𝑡)) | 
| 9 |   | pceu.8 | 
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 = (𝑥 / 𝑦)) | 
| 10 | 8, 9 | eqtr3d 2231 | 
. . . . . . . . 9
⊢ (𝜑 → (𝑠 / 𝑡) = (𝑥 / 𝑦)) | 
| 11 | 4 | simprd 114 | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝑡 ∈ ℕ) | 
| 12 | 11 | nncnd 9004 | 
. . . . . . . . . 10
⊢ (𝜑 → 𝑡 ∈ ℂ) | 
| 13 | 1 | simpld 112 | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝑥 ∈ ℤ) | 
| 14 | 13 | zcnd 9449 | 
. . . . . . . . . 10
⊢ (𝜑 → 𝑥 ∈ ℂ) | 
| 15 | 11 | nnap0d 9036 | 
. . . . . . . . . 10
⊢ (𝜑 → 𝑡 # 0) | 
| 16 | 2 | nnap0d 9036 | 
. . . . . . . . . 10
⊢ (𝜑 → 𝑦 # 0) | 
| 17 | 6, 12, 14, 3, 15, 16 | divmuleqapd 8860 | 
. . . . . . . . 9
⊢ (𝜑 → ((𝑠 / 𝑡) = (𝑥 / 𝑦) ↔ (𝑠 · 𝑦) = (𝑥 · 𝑡))) | 
| 18 | 10, 17 | mpbid 147 | 
. . . . . . . 8
⊢ (𝜑 → (𝑠 · 𝑦) = (𝑥 · 𝑡)) | 
| 19 | 7, 18 | eqtrd 2229 | 
. . . . . . 7
⊢ (𝜑 → (𝑦 · 𝑠) = (𝑥 · 𝑡)) | 
| 20 | 19 | breq2d 4045 | 
. . . . . 6
⊢ (𝜑 → ((𝑃↑𝑧) ∥ (𝑦 · 𝑠) ↔ (𝑃↑𝑧) ∥ (𝑥 · 𝑡))) | 
| 21 | 20 | rabbidv 2752 | 
. . . . 5
⊢ (𝜑 → {𝑧 ∈ ℕ0 ∣ (𝑃↑𝑧) ∥ (𝑦 · 𝑠)} = {𝑧 ∈ ℕ0 ∣ (𝑃↑𝑧) ∥ (𝑥 · 𝑡)}) | 
| 22 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑛 = 𝑧 → (𝑃↑𝑛) = (𝑃↑𝑧)) | 
| 23 | 22 | breq1d 4043 | 
. . . . . 6
⊢ (𝑛 = 𝑧 → ((𝑃↑𝑛) ∥ (𝑦 · 𝑠) ↔ (𝑃↑𝑧) ∥ (𝑦 · 𝑠))) | 
| 24 | 23 | cbvrabv 2762 | 
. . . . 5
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ (𝑦 · 𝑠)} = {𝑧 ∈ ℕ0 ∣ (𝑃↑𝑧) ∥ (𝑦 · 𝑠)} | 
| 25 | 22 | breq1d 4043 | 
. . . . . 6
⊢ (𝑛 = 𝑧 → ((𝑃↑𝑛) ∥ (𝑥 · 𝑡) ↔ (𝑃↑𝑧) ∥ (𝑥 · 𝑡))) | 
| 26 | 25 | cbvrabv 2762 | 
. . . . 5
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ (𝑥 · 𝑡)} = {𝑧 ∈ ℕ0 ∣ (𝑃↑𝑧) ∥ (𝑥 · 𝑡)} | 
| 27 | 21, 24, 26 | 3eqtr4g 2254 | 
. . . 4
⊢ (𝜑 → {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑦 · 𝑠)} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑥 · 𝑡)}) | 
| 28 | 27 | supeq1d 7053 | 
. . 3
⊢ (𝜑 → sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < )) | 
| 29 |   | pceu.5 | 
. . . 4
⊢ (𝜑 → 𝑃 ∈ ℙ) | 
| 30 | 2 | nnzd 9447 | 
. . . 4
⊢ (𝜑 → 𝑦 ∈ ℤ) | 
| 31 | 2 | nnne0d 9035 | 
. . . 4
⊢ (𝜑 → 𝑦 ≠ 0) | 
| 32 |   | pceu.6 | 
. . . . 5
⊢ (𝜑 → 𝑁 ≠ 0) | 
| 33 | 12, 15 | div0apd 8814 | 
. . . . . . . 8
⊢ (𝜑 → (0 / 𝑡) = 0) | 
| 34 |   | oveq1 5929 | 
. . . . . . . . 9
⊢ (𝑠 = 0 → (𝑠 / 𝑡) = (0 / 𝑡)) | 
| 35 | 34 | eqeq1d 2205 | 
. . . . . . . 8
⊢ (𝑠 = 0 → ((𝑠 / 𝑡) = 0 ↔ (0 / 𝑡) = 0)) | 
| 36 | 33, 35 | syl5ibrcom 157 | 
. . . . . . 7
⊢ (𝜑 → (𝑠 = 0 → (𝑠 / 𝑡) = 0)) | 
| 37 | 8 | eqeq1d 2205 | 
. . . . . . 7
⊢ (𝜑 → (𝑁 = 0 ↔ (𝑠 / 𝑡) = 0)) | 
| 38 | 36, 37 | sylibrd 169 | 
. . . . . 6
⊢ (𝜑 → (𝑠 = 0 → 𝑁 = 0)) | 
| 39 | 38 | necon3d 2411 | 
. . . . 5
⊢ (𝜑 → (𝑁 ≠ 0 → 𝑠 ≠ 0)) | 
| 40 | 32, 39 | mpd 13 | 
. . . 4
⊢ (𝜑 → 𝑠 ≠ 0) | 
| 41 |   | pcval.2 | 
. . . . 5
⊢ 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ) | 
| 42 |   | pceu.3 | 
. . . . 5
⊢ 𝑈 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) | 
| 43 |   | eqid 2196 | 
. . . . 5
⊢
sup({𝑛 ∈
ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < ) | 
| 44 | 41, 42, 43 | pcpremul 12462 | 
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0) ∧ (𝑠 ∈ ℤ ∧ 𝑠 ≠ 0)) → (𝑇 + 𝑈) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < )) | 
| 45 | 29, 30, 31, 5, 40, 44 | syl122anc 1258 | 
. . 3
⊢ (𝜑 → (𝑇 + 𝑈) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < )) | 
| 46 | 3, 16 | div0apd 8814 | 
. . . . . . . 8
⊢ (𝜑 → (0 / 𝑦) = 0) | 
| 47 |   | oveq1 5929 | 
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝑥 / 𝑦) = (0 / 𝑦)) | 
| 48 | 47 | eqeq1d 2205 | 
. . . . . . . 8
⊢ (𝑥 = 0 → ((𝑥 / 𝑦) = 0 ↔ (0 / 𝑦) = 0)) | 
| 49 | 46, 48 | syl5ibrcom 157 | 
. . . . . . 7
⊢ (𝜑 → (𝑥 = 0 → (𝑥 / 𝑦) = 0)) | 
| 50 | 9 | eqeq1d 2205 | 
. . . . . . 7
⊢ (𝜑 → (𝑁 = 0 ↔ (𝑥 / 𝑦) = 0)) | 
| 51 | 49, 50 | sylibrd 169 | 
. . . . . 6
⊢ (𝜑 → (𝑥 = 0 → 𝑁 = 0)) | 
| 52 | 51 | necon3d 2411 | 
. . . . 5
⊢ (𝜑 → (𝑁 ≠ 0 → 𝑥 ≠ 0)) | 
| 53 | 32, 52 | mpd 13 | 
. . . 4
⊢ (𝜑 → 𝑥 ≠ 0) | 
| 54 | 11 | nnzd 9447 | 
. . . 4
⊢ (𝜑 → 𝑡 ∈ ℤ) | 
| 55 | 11 | nnne0d 9035 | 
. . . 4
⊢ (𝜑 → 𝑡 ≠ 0) | 
| 56 |   | pcval.1 | 
. . . . 5
⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) | 
| 57 |   | pceu.4 | 
. . . . 5
⊢ 𝑉 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ) | 
| 58 |   | eqid 2196 | 
. . . . 5
⊢
sup({𝑛 ∈
ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < ) | 
| 59 | 56, 57, 58 | pcpremul 12462 | 
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ (𝑡 ∈ ℤ ∧ 𝑡 ≠ 0)) → (𝑆 + 𝑉) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < )) | 
| 60 | 29, 13, 53, 54, 55, 59 | syl122anc 1258 | 
. . 3
⊢ (𝜑 → (𝑆 + 𝑉) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < )) | 
| 61 | 28, 45, 60 | 3eqtr4d 2239 | 
. 2
⊢ (𝜑 → (𝑇 + 𝑈) = (𝑆 + 𝑉)) | 
| 62 |   | prmuz2 12299 | 
. . . . . 6
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
(ℤ≥‘2)) | 
| 63 | 29, 62 | syl 14 | 
. . . . 5
⊢ (𝜑 → 𝑃 ∈
(ℤ≥‘2)) | 
| 64 |   | eqid 2196 | 
. . . . . . 7
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦} | 
| 65 | 64, 41 | pcprecl 12458 | 
. . . . . 6
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → (𝑇 ∈ ℕ0 ∧ (𝑃↑𝑇) ∥ 𝑦)) | 
| 66 | 65 | simpld 112 | 
. . . . 5
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → 𝑇 ∈
ℕ0) | 
| 67 | 63, 30, 31, 66 | syl12anc 1247 | 
. . . 4
⊢ (𝜑 → 𝑇 ∈
ℕ0) | 
| 68 | 67 | nn0cnd 9304 | 
. . 3
⊢ (𝜑 → 𝑇 ∈ ℂ) | 
| 69 |   | eqid 2196 | 
. . . . . . 7
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑠} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠} | 
| 70 | 69, 42 | pcprecl 12458 | 
. . . . . 6
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑠 ∈ ℤ ∧ 𝑠 ≠ 0)) → (𝑈 ∈ ℕ0 ∧ (𝑃↑𝑈) ∥ 𝑠)) | 
| 71 | 70 | simpld 112 | 
. . . . 5
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑠 ∈ ℤ ∧ 𝑠 ≠ 0)) → 𝑈 ∈
ℕ0) | 
| 72 | 63, 5, 40, 71 | syl12anc 1247 | 
. . . 4
⊢ (𝜑 → 𝑈 ∈
ℕ0) | 
| 73 | 72 | nn0cnd 9304 | 
. . 3
⊢ (𝜑 → 𝑈 ∈ ℂ) | 
| 74 |   | eqid 2196 | 
. . . . . . 7
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑥} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥} | 
| 75 | 74, 56 | pcprecl 12458 | 
. . . . . 6
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑥)) | 
| 76 | 75 | simpld 112 | 
. . . . 5
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → 𝑆 ∈
ℕ0) | 
| 77 | 63, 13, 53, 76 | syl12anc 1247 | 
. . . 4
⊢ (𝜑 → 𝑆 ∈
ℕ0) | 
| 78 | 77 | nn0cnd 9304 | 
. . 3
⊢ (𝜑 → 𝑆 ∈ ℂ) | 
| 79 |   | eqid 2196 | 
. . . . . . 7
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑡} | 
| 80 | 79, 57 | pcprecl 12458 | 
. . . . . 6
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑡 ∈ ℤ ∧ 𝑡 ≠ 0)) → (𝑉 ∈ ℕ0 ∧ (𝑃↑𝑉) ∥ 𝑡)) | 
| 81 | 80 | simpld 112 | 
. . . . 5
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑡 ∈ ℤ ∧ 𝑡 ≠ 0)) → 𝑉 ∈
ℕ0) | 
| 82 | 63, 54, 55, 81 | syl12anc 1247 | 
. . . 4
⊢ (𝜑 → 𝑉 ∈
ℕ0) | 
| 83 | 82 | nn0cnd 9304 | 
. . 3
⊢ (𝜑 → 𝑉 ∈ ℂ) | 
| 84 | 68, 73, 78, 83 | addsubeq4d 8388 | 
. 2
⊢ (𝜑 → ((𝑇 + 𝑈) = (𝑆 + 𝑉) ↔ (𝑆 − 𝑇) = (𝑈 − 𝑉))) | 
| 85 | 61, 84 | mpbid 147 | 
1
⊢ (𝜑 → (𝑆 − 𝑇) = (𝑈 − 𝑉)) |