ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvnz GIF version

Theorem grpinvnz 12947
Description: The inverse of a nonzero group element is not zero. (Contributed by Stefan O'Rear, 27-Feb-2015.)
Hypotheses
Ref Expression
grpinvnzcl.b 𝐵 = (Base‘𝐺)
grpinvnzcl.z 0 = (0g𝐺)
grpinvnzcl.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvnz ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑋0 ) → (𝑁𝑋) ≠ 0 )

Proof of Theorem grpinvnz
StepHypRef Expression
1 fveq2 5517 . . . . . 6 ((𝑁𝑋) = 0 → (𝑁‘(𝑁𝑋)) = (𝑁0 ))
21adantl 277 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑁𝑋) = 0 ) → (𝑁‘(𝑁𝑋)) = (𝑁0 ))
3 grpinvnzcl.b . . . . . . 7 𝐵 = (Base‘𝐺)
4 grpinvnzcl.n . . . . . . 7 𝑁 = (invg𝐺)
53, 4grpinvinv 12943 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁‘(𝑁𝑋)) = 𝑋)
65adantr 276 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑁𝑋) = 0 ) → (𝑁‘(𝑁𝑋)) = 𝑋)
7 grpinvnzcl.z . . . . . . 7 0 = (0g𝐺)
87, 4grpinvid 12936 . . . . . 6 (𝐺 ∈ Grp → (𝑁0 ) = 0 )
98ad2antrr 488 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑁𝑋) = 0 ) → (𝑁0 ) = 0 )
102, 6, 93eqtr3d 2218 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑁𝑋) = 0 ) → 𝑋 = 0 )
1110ex 115 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋) = 0𝑋 = 0 ))
1211necon3d 2391 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋0 → (𝑁𝑋) ≠ 0 ))
13123impia 1200 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑋0 ) → (𝑁𝑋) ≠ 0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  wne 2347  cfv 5218  Basecbs 12465  0gc0g 12711  Grpcgrp 12883  invgcminusg 12884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7905  ax-resscn 7906  ax-1re 7908  ax-addrcl 7911
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5834  df-ov 5881  df-inn 8923  df-2 8981  df-ndx 12468  df-slot 12469  df-base 12471  df-plusg 12552  df-0g 12713  df-mgm 12781  df-sgrp 12814  df-mnd 12824  df-grp 12886  df-minusg 12887
This theorem is referenced by:  grpinvnzcl  12948
  Copyright terms: Public domain W3C validator