![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > suppssfv | GIF version |
Description: Formula building theorem for support restriction, on a function which preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
Ref | Expression |
---|---|
suppssfv.a | ⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ 𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿) |
suppssfv.f | ⊢ (𝜑 → (𝐹‘𝑌) = 𝑍) |
suppssfv.v | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
suppssfv | ⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ (𝐹‘𝐴)) “ (V ∖ {𝑍})) ⊆ 𝐿) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsni 3736 | . . . . 5 ⊢ ((𝐹‘𝐴) ∈ (V ∖ {𝑍}) → (𝐹‘𝐴) ≠ 𝑍) | |
2 | suppssfv.v | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ 𝑉) | |
3 | elex 2763 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
4 | 2, 3 | syl 14 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ V) |
5 | 4 | adantr 276 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ (𝐹‘𝐴) ≠ 𝑍) → 𝐴 ∈ V) |
6 | suppssfv.f | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐹‘𝑌) = 𝑍) | |
7 | fveq2 5530 | . . . . . . . . . . . 12 ⊢ (𝐴 = 𝑌 → (𝐹‘𝐴) = (𝐹‘𝑌)) | |
8 | 7 | eqeq1d 2198 | . . . . . . . . . . 11 ⊢ (𝐴 = 𝑌 → ((𝐹‘𝐴) = 𝑍 ↔ (𝐹‘𝑌) = 𝑍)) |
9 | 6, 8 | syl5ibrcom 157 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴 = 𝑌 → (𝐹‘𝐴) = 𝑍)) |
10 | 9 | necon3d 2404 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐹‘𝐴) ≠ 𝑍 → 𝐴 ≠ 𝑌)) |
11 | 10 | adantr 276 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝐹‘𝐴) ≠ 𝑍 → 𝐴 ≠ 𝑌)) |
12 | 11 | imp 124 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ (𝐹‘𝐴) ≠ 𝑍) → 𝐴 ≠ 𝑌) |
13 | eldifsn 3734 | . . . . . . 7 ⊢ (𝐴 ∈ (V ∖ {𝑌}) ↔ (𝐴 ∈ V ∧ 𝐴 ≠ 𝑌)) | |
14 | 5, 12, 13 | sylanbrc 417 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ (𝐹‘𝐴) ≠ 𝑍) → 𝐴 ∈ (V ∖ {𝑌})) |
15 | 14 | ex 115 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝐹‘𝐴) ≠ 𝑍 → 𝐴 ∈ (V ∖ {𝑌}))) |
16 | 1, 15 | syl5 32 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝐹‘𝐴) ∈ (V ∖ {𝑍}) → 𝐴 ∈ (V ∖ {𝑌}))) |
17 | 16 | ss2rabdv 3251 | . . 3 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝐴) ∈ (V ∖ {𝑍})} ⊆ {𝑥 ∈ 𝐷 ∣ 𝐴 ∈ (V ∖ {𝑌})}) |
18 | eqid 2189 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ (𝐹‘𝐴)) = (𝑥 ∈ 𝐷 ↦ (𝐹‘𝐴)) | |
19 | 18 | mptpreima 5137 | . . 3 ⊢ (◡(𝑥 ∈ 𝐷 ↦ (𝐹‘𝐴)) “ (V ∖ {𝑍})) = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝐴) ∈ (V ∖ {𝑍})} |
20 | eqid 2189 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐴) = (𝑥 ∈ 𝐷 ↦ 𝐴) | |
21 | 20 | mptpreima 5137 | . . 3 ⊢ (◡(𝑥 ∈ 𝐷 ↦ 𝐴) “ (V ∖ {𝑌})) = {𝑥 ∈ 𝐷 ∣ 𝐴 ∈ (V ∖ {𝑌})} |
22 | 17, 19, 21 | 3sstr4g 3213 | . 2 ⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ (𝐹‘𝐴)) “ (V ∖ {𝑍})) ⊆ (◡(𝑥 ∈ 𝐷 ↦ 𝐴) “ (V ∖ {𝑌}))) |
23 | suppssfv.a | . 2 ⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ 𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿) | |
24 | 22, 23 | sstrd 3180 | 1 ⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ (𝐹‘𝐴)) “ (V ∖ {𝑍})) ⊆ 𝐿) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 ≠ wne 2360 {crab 2472 Vcvv 2752 ∖ cdif 3141 ⊆ wss 3144 {csn 3607 ↦ cmpt 4079 ◡ccnv 4640 “ cima 4644 ‘cfv 5231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-mpt 4081 df-xp 4647 df-rel 4648 df-cnv 4649 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fv 5239 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |