ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suppssfv GIF version

Theorem suppssfv 6172
Description: Formula building theorem for support restriction, on a function which preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
suppssfv.a (𝜑 → ((𝑥𝐷𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿)
suppssfv.f (𝜑 → (𝐹𝑌) = 𝑍)
suppssfv.v ((𝜑𝑥𝐷) → 𝐴𝑉)
Assertion
Ref Expression
suppssfv (𝜑 → ((𝑥𝐷 ↦ (𝐹𝐴)) “ (V ∖ {𝑍})) ⊆ 𝐿)
Distinct variable groups:   𝜑,𝑥   𝑥,𝑌   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥)   𝐷(𝑥)   𝐹(𝑥)   𝐿(𝑥)   𝑉(𝑥)

Proof of Theorem suppssfv
StepHypRef Expression
1 eldifsni 3768 . . . . 5 ((𝐹𝐴) ∈ (V ∖ {𝑍}) → (𝐹𝐴) ≠ 𝑍)
2 suppssfv.v . . . . . . . . 9 ((𝜑𝑥𝐷) → 𝐴𝑉)
3 elex 2785 . . . . . . . . 9 (𝐴𝑉𝐴 ∈ V)
42, 3syl 14 . . . . . . . 8 ((𝜑𝑥𝐷) → 𝐴 ∈ V)
54adantr 276 . . . . . . 7 (((𝜑𝑥𝐷) ∧ (𝐹𝐴) ≠ 𝑍) → 𝐴 ∈ V)
6 suppssfv.f . . . . . . . . . . 11 (𝜑 → (𝐹𝑌) = 𝑍)
7 fveq2 5594 . . . . . . . . . . . 12 (𝐴 = 𝑌 → (𝐹𝐴) = (𝐹𝑌))
87eqeq1d 2215 . . . . . . . . . . 11 (𝐴 = 𝑌 → ((𝐹𝐴) = 𝑍 ↔ (𝐹𝑌) = 𝑍))
96, 8syl5ibrcom 157 . . . . . . . . . 10 (𝜑 → (𝐴 = 𝑌 → (𝐹𝐴) = 𝑍))
109necon3d 2421 . . . . . . . . 9 (𝜑 → ((𝐹𝐴) ≠ 𝑍𝐴𝑌))
1110adantr 276 . . . . . . . 8 ((𝜑𝑥𝐷) → ((𝐹𝐴) ≠ 𝑍𝐴𝑌))
1211imp 124 . . . . . . 7 (((𝜑𝑥𝐷) ∧ (𝐹𝐴) ≠ 𝑍) → 𝐴𝑌)
13 eldifsn 3766 . . . . . . 7 (𝐴 ∈ (V ∖ {𝑌}) ↔ (𝐴 ∈ V ∧ 𝐴𝑌))
145, 12, 13sylanbrc 417 . . . . . 6 (((𝜑𝑥𝐷) ∧ (𝐹𝐴) ≠ 𝑍) → 𝐴 ∈ (V ∖ {𝑌}))
1514ex 115 . . . . 5 ((𝜑𝑥𝐷) → ((𝐹𝐴) ≠ 𝑍𝐴 ∈ (V ∖ {𝑌})))
161, 15syl5 32 . . . 4 ((𝜑𝑥𝐷) → ((𝐹𝐴) ∈ (V ∖ {𝑍}) → 𝐴 ∈ (V ∖ {𝑌})))
1716ss2rabdv 3278 . . 3 (𝜑 → {𝑥𝐷 ∣ (𝐹𝐴) ∈ (V ∖ {𝑍})} ⊆ {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})})
18 eqid 2206 . . . 4 (𝑥𝐷 ↦ (𝐹𝐴)) = (𝑥𝐷 ↦ (𝐹𝐴))
1918mptpreima 5190 . . 3 ((𝑥𝐷 ↦ (𝐹𝐴)) “ (V ∖ {𝑍})) = {𝑥𝐷 ∣ (𝐹𝐴) ∈ (V ∖ {𝑍})}
20 eqid 2206 . . . 4 (𝑥𝐷𝐴) = (𝑥𝐷𝐴)
2120mptpreima 5190 . . 3 ((𝑥𝐷𝐴) “ (V ∖ {𝑌})) = {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})}
2217, 19, 213sstr4g 3240 . 2 (𝜑 → ((𝑥𝐷 ↦ (𝐹𝐴)) “ (V ∖ {𝑍})) ⊆ ((𝑥𝐷𝐴) “ (V ∖ {𝑌})))
23 suppssfv.a . 2 (𝜑 → ((𝑥𝐷𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿)
2422, 23sstrd 3207 1 (𝜑 → ((𝑥𝐷 ↦ (𝐹𝐴)) “ (V ∖ {𝑍})) ⊆ 𝐿)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wne 2377  {crab 2489  Vcvv 2773  cdif 3167  wss 3170  {csn 3638  cmpt 4116  ccnv 4687  cima 4691  cfv 5285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-mpt 4118  df-xp 4694  df-rel 4695  df-cnv 4696  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fv 5293
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator