ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suppssfv GIF version

Theorem suppssfv 6135
Description: Formula building theorem for support restriction, on a function which preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
suppssfv.a (𝜑 → ((𝑥𝐷𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿)
suppssfv.f (𝜑 → (𝐹𝑌) = 𝑍)
suppssfv.v ((𝜑𝑥𝐷) → 𝐴𝑉)
Assertion
Ref Expression
suppssfv (𝜑 → ((𝑥𝐷 ↦ (𝐹𝐴)) “ (V ∖ {𝑍})) ⊆ 𝐿)
Distinct variable groups:   𝜑,𝑥   𝑥,𝑌   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥)   𝐷(𝑥)   𝐹(𝑥)   𝐿(𝑥)   𝑉(𝑥)

Proof of Theorem suppssfv
StepHypRef Expression
1 eldifsni 3752 . . . . 5 ((𝐹𝐴) ∈ (V ∖ {𝑍}) → (𝐹𝐴) ≠ 𝑍)
2 suppssfv.v . . . . . . . . 9 ((𝜑𝑥𝐷) → 𝐴𝑉)
3 elex 2774 . . . . . . . . 9 (𝐴𝑉𝐴 ∈ V)
42, 3syl 14 . . . . . . . 8 ((𝜑𝑥𝐷) → 𝐴 ∈ V)
54adantr 276 . . . . . . 7 (((𝜑𝑥𝐷) ∧ (𝐹𝐴) ≠ 𝑍) → 𝐴 ∈ V)
6 suppssfv.f . . . . . . . . . . 11 (𝜑 → (𝐹𝑌) = 𝑍)
7 fveq2 5561 . . . . . . . . . . . 12 (𝐴 = 𝑌 → (𝐹𝐴) = (𝐹𝑌))
87eqeq1d 2205 . . . . . . . . . . 11 (𝐴 = 𝑌 → ((𝐹𝐴) = 𝑍 ↔ (𝐹𝑌) = 𝑍))
96, 8syl5ibrcom 157 . . . . . . . . . 10 (𝜑 → (𝐴 = 𝑌 → (𝐹𝐴) = 𝑍))
109necon3d 2411 . . . . . . . . 9 (𝜑 → ((𝐹𝐴) ≠ 𝑍𝐴𝑌))
1110adantr 276 . . . . . . . 8 ((𝜑𝑥𝐷) → ((𝐹𝐴) ≠ 𝑍𝐴𝑌))
1211imp 124 . . . . . . 7 (((𝜑𝑥𝐷) ∧ (𝐹𝐴) ≠ 𝑍) → 𝐴𝑌)
13 eldifsn 3750 . . . . . . 7 (𝐴 ∈ (V ∖ {𝑌}) ↔ (𝐴 ∈ V ∧ 𝐴𝑌))
145, 12, 13sylanbrc 417 . . . . . 6 (((𝜑𝑥𝐷) ∧ (𝐹𝐴) ≠ 𝑍) → 𝐴 ∈ (V ∖ {𝑌}))
1514ex 115 . . . . 5 ((𝜑𝑥𝐷) → ((𝐹𝐴) ≠ 𝑍𝐴 ∈ (V ∖ {𝑌})))
161, 15syl5 32 . . . 4 ((𝜑𝑥𝐷) → ((𝐹𝐴) ∈ (V ∖ {𝑍}) → 𝐴 ∈ (V ∖ {𝑌})))
1716ss2rabdv 3265 . . 3 (𝜑 → {𝑥𝐷 ∣ (𝐹𝐴) ∈ (V ∖ {𝑍})} ⊆ {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})})
18 eqid 2196 . . . 4 (𝑥𝐷 ↦ (𝐹𝐴)) = (𝑥𝐷 ↦ (𝐹𝐴))
1918mptpreima 5164 . . 3 ((𝑥𝐷 ↦ (𝐹𝐴)) “ (V ∖ {𝑍})) = {𝑥𝐷 ∣ (𝐹𝐴) ∈ (V ∖ {𝑍})}
20 eqid 2196 . . . 4 (𝑥𝐷𝐴) = (𝑥𝐷𝐴)
2120mptpreima 5164 . . 3 ((𝑥𝐷𝐴) “ (V ∖ {𝑌})) = {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})}
2217, 19, 213sstr4g 3227 . 2 (𝜑 → ((𝑥𝐷 ↦ (𝐹𝐴)) “ (V ∖ {𝑍})) ⊆ ((𝑥𝐷𝐴) “ (V ∖ {𝑌})))
23 suppssfv.a . 2 (𝜑 → ((𝑥𝐷𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿)
2422, 23sstrd 3194 1 (𝜑 → ((𝑥𝐷 ↦ (𝐹𝐴)) “ (V ∖ {𝑍})) ⊆ 𝐿)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wne 2367  {crab 2479  Vcvv 2763  cdif 3154  wss 3157  {csn 3623  cmpt 4095  ccnv 4663  cima 4667  cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-xp 4670  df-rel 4671  df-cnv 4672  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fv 5267
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator