Proof of Theorem suppssfv
| Step | Hyp | Ref
| Expression |
| 1 | | eldifsni 3751 |
. . . . 5
⊢ ((𝐹‘𝐴) ∈ (V ∖ {𝑍}) → (𝐹‘𝐴) ≠ 𝑍) |
| 2 | | suppssfv.v |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ 𝑉) |
| 3 | | elex 2774 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
| 4 | 2, 3 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ V) |
| 5 | 4 | adantr 276 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ (𝐹‘𝐴) ≠ 𝑍) → 𝐴 ∈ V) |
| 6 | | suppssfv.f |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹‘𝑌) = 𝑍) |
| 7 | | fveq2 5558 |
. . . . . . . . . . . 12
⊢ (𝐴 = 𝑌 → (𝐹‘𝐴) = (𝐹‘𝑌)) |
| 8 | 7 | eqeq1d 2205 |
. . . . . . . . . . 11
⊢ (𝐴 = 𝑌 → ((𝐹‘𝐴) = 𝑍 ↔ (𝐹‘𝑌) = 𝑍)) |
| 9 | 6, 8 | syl5ibrcom 157 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 = 𝑌 → (𝐹‘𝐴) = 𝑍)) |
| 10 | 9 | necon3d 2411 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐹‘𝐴) ≠ 𝑍 → 𝐴 ≠ 𝑌)) |
| 11 | 10 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝐹‘𝐴) ≠ 𝑍 → 𝐴 ≠ 𝑌)) |
| 12 | 11 | imp 124 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ (𝐹‘𝐴) ≠ 𝑍) → 𝐴 ≠ 𝑌) |
| 13 | | eldifsn 3749 |
. . . . . . 7
⊢ (𝐴 ∈ (V ∖ {𝑌}) ↔ (𝐴 ∈ V ∧ 𝐴 ≠ 𝑌)) |
| 14 | 5, 12, 13 | sylanbrc 417 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ (𝐹‘𝐴) ≠ 𝑍) → 𝐴 ∈ (V ∖ {𝑌})) |
| 15 | 14 | ex 115 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝐹‘𝐴) ≠ 𝑍 → 𝐴 ∈ (V ∖ {𝑌}))) |
| 16 | 1, 15 | syl5 32 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝐹‘𝐴) ∈ (V ∖ {𝑍}) → 𝐴 ∈ (V ∖ {𝑌}))) |
| 17 | 16 | ss2rabdv 3264 |
. . 3
⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝐴) ∈ (V ∖ {𝑍})} ⊆ {𝑥 ∈ 𝐷 ∣ 𝐴 ∈ (V ∖ {𝑌})}) |
| 18 | | eqid 2196 |
. . . 4
⊢ (𝑥 ∈ 𝐷 ↦ (𝐹‘𝐴)) = (𝑥 ∈ 𝐷 ↦ (𝐹‘𝐴)) |
| 19 | 18 | mptpreima 5163 |
. . 3
⊢ (◡(𝑥 ∈ 𝐷 ↦ (𝐹‘𝐴)) “ (V ∖ {𝑍})) = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝐴) ∈ (V ∖ {𝑍})} |
| 20 | | eqid 2196 |
. . . 4
⊢ (𝑥 ∈ 𝐷 ↦ 𝐴) = (𝑥 ∈ 𝐷 ↦ 𝐴) |
| 21 | 20 | mptpreima 5163 |
. . 3
⊢ (◡(𝑥 ∈ 𝐷 ↦ 𝐴) “ (V ∖ {𝑌})) = {𝑥 ∈ 𝐷 ∣ 𝐴 ∈ (V ∖ {𝑌})} |
| 22 | 17, 19, 21 | 3sstr4g 3226 |
. 2
⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ (𝐹‘𝐴)) “ (V ∖ {𝑍})) ⊆ (◡(𝑥 ∈ 𝐷 ↦ 𝐴) “ (V ∖ {𝑌}))) |
| 23 | | suppssfv.a |
. 2
⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ 𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿) |
| 24 | 22, 23 | sstrd 3193 |
1
⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ (𝐹‘𝐴)) “ (V ∖ {𝑍})) ⊆ 𝐿) |