ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeliunxp2 GIF version

Theorem opeliunxp2 4564
Description: Membership in a union of cross products. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypothesis
Ref Expression
opeliunxp2.1 (𝑥 = 𝐶𝐵 = 𝐸)
Assertion
Ref Expression
opeliunxp2 (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem opeliunxp2
StepHypRef Expression
1 df-br 3838 . . 3 (𝐶 𝑥𝐴 ({𝑥} × 𝐵)𝐷 ↔ ⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵))
2 relxp 4535 . . . . . 6 Rel ({𝑥} × 𝐵)
32rgenw 2430 . . . . 5 𝑥𝐴 Rel ({𝑥} × 𝐵)
4 reliun 4546 . . . . 5 (Rel 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∀𝑥𝐴 Rel ({𝑥} × 𝐵))
53, 4mpbir 144 . . . 4 Rel 𝑥𝐴 ({𝑥} × 𝐵)
65brrelexi 4468 . . 3 (𝐶 𝑥𝐴 ({𝑥} × 𝐵)𝐷𝐶 ∈ V)
71, 6sylbir 133 . 2 (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) → 𝐶 ∈ V)
8 elex 2630 . . 3 (𝐶𝐴𝐶 ∈ V)
98adantr 270 . 2 ((𝐶𝐴𝐷𝐸) → 𝐶 ∈ V)
10 nfcv 2228 . . 3 𝑥𝐶
11 nfiu1 3755 . . . . 5 𝑥 𝑥𝐴 ({𝑥} × 𝐵)
1211nfel2 2241 . . . 4 𝑥𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)
13 nfv 1466 . . . 4 𝑥(𝐶𝐴𝐷𝐸)
1412, 13nfbi 1526 . . 3 𝑥(⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
15 opeq1 3617 . . . . 5 (𝑥 = 𝐶 → ⟨𝑥, 𝐷⟩ = ⟨𝐶, 𝐷⟩)
1615eleq1d 2156 . . . 4 (𝑥 = 𝐶 → (⟨𝑥, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ ⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)))
17 eleq1 2150 . . . . 5 (𝑥 = 𝐶 → (𝑥𝐴𝐶𝐴))
18 opeliunxp2.1 . . . . . 6 (𝑥 = 𝐶𝐵 = 𝐸)
1918eleq2d 2157 . . . . 5 (𝑥 = 𝐶 → (𝐷𝐵𝐷𝐸))
2017, 19anbi12d 457 . . . 4 (𝑥 = 𝐶 → ((𝑥𝐴𝐷𝐵) ↔ (𝐶𝐴𝐷𝐸)))
2116, 20bibi12d 233 . . 3 (𝑥 = 𝐶 → ((⟨𝑥, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐷𝐵)) ↔ (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))))
22 opeliunxp 4481 . . 3 (⟨𝑥, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐷𝐵))
2310, 14, 21, 22vtoclgf 2677 . 2 (𝐶 ∈ V → (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸)))
247, 9, 23pm5.21nii 655 1 (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1289  wcel 1438  wral 2359  Vcvv 2619  {csn 3441  cop 3444   ciun 3725   class class class wbr 3837   × cxp 4426  Rel wrel 4433
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-sbc 2839  df-csb 2932  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-iun 3727  df-br 3838  df-opab 3892  df-xp 4434  df-rel 4435
This theorem is referenced by:  mpt2xopn0yelv  5986
  Copyright terms: Public domain W3C validator