Proof of Theorem opeliunxp2
Step | Hyp | Ref
| Expression |
1 | | df-br 3990 |
. . 3
⊢ (𝐶∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)𝐷 ↔ 〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) |
2 | | relxp 4720 |
. . . . . 6
⊢ Rel
({𝑥} × 𝐵) |
3 | 2 | rgenw 2525 |
. . . . 5
⊢
∀𝑥 ∈
𝐴 Rel ({𝑥} × 𝐵) |
4 | | reliun 4732 |
. . . . 5
⊢ (Rel
∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ ∀𝑥 ∈ 𝐴 Rel ({𝑥} × 𝐵)) |
5 | 3, 4 | mpbir 145 |
. . . 4
⊢ Rel
∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
6 | 5 | brrelex1i 4654 |
. . 3
⊢ (𝐶∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)𝐷 → 𝐶 ∈ V) |
7 | 1, 6 | sylbir 134 |
. 2
⊢
(〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) → 𝐶 ∈ V) |
8 | | elex 2741 |
. . 3
⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ V) |
9 | 8 | adantr 274 |
. 2
⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸) → 𝐶 ∈ V) |
10 | | nfcv 2312 |
. . 3
⊢
Ⅎ𝑥𝐶 |
11 | | nfiu1 3903 |
. . . . 5
⊢
Ⅎ𝑥∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
12 | 11 | nfel2 2325 |
. . . 4
⊢
Ⅎ𝑥〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
13 | | nfv 1521 |
. . . 4
⊢
Ⅎ𝑥(𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸) |
14 | 12, 13 | nfbi 1582 |
. . 3
⊢
Ⅎ𝑥(〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)) |
15 | | opeq1 3765 |
. . . . 5
⊢ (𝑥 = 𝐶 → 〈𝑥, 𝐷〉 = 〈𝐶, 𝐷〉) |
16 | 15 | eleq1d 2239 |
. . . 4
⊢ (𝑥 = 𝐶 → (〈𝑥, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ 〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) |
17 | | eleq1 2233 |
. . . . 5
⊢ (𝑥 = 𝐶 → (𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) |
18 | | opeliunxp2.1 |
. . . . . 6
⊢ (𝑥 = 𝐶 → 𝐵 = 𝐸) |
19 | 18 | eleq2d 2240 |
. . . . 5
⊢ (𝑥 = 𝐶 → (𝐷 ∈ 𝐵 ↔ 𝐷 ∈ 𝐸)) |
20 | 17, 19 | anbi12d 470 |
. . . 4
⊢ (𝑥 = 𝐶 → ((𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸))) |
21 | 16, 20 | bibi12d 234 |
. . 3
⊢ (𝑥 = 𝐶 → ((〈𝑥, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) ↔ (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)))) |
22 | | opeliunxp 4666 |
. . 3
⊢
(〈𝑥, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) |
23 | 10, 14, 21, 22 | vtoclgf 2788 |
. 2
⊢ (𝐶 ∈ V → (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸))) |
24 | 7, 9, 23 | pm5.21nii 699 |
1
⊢
(〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)) |