ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmpt GIF version

Theorem nfmpt 4121
Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.)
Hypotheses
Ref Expression
nfmpt.1 𝑥𝐴
nfmpt.2 𝑥𝐵
Assertion
Ref Expression
nfmpt 𝑥(𝑦𝐴𝐵)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-mpt 4092 . 2 (𝑦𝐴𝐵) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧 = 𝐵)}
2 nfmpt.1 . . . . 5 𝑥𝐴
32nfcri 2330 . . . 4 𝑥 𝑦𝐴
4 nfmpt.2 . . . . 5 𝑥𝐵
54nfeq2 2348 . . . 4 𝑥 𝑧 = 𝐵
63, 5nfan 1576 . . 3 𝑥(𝑦𝐴𝑧 = 𝐵)
76nfopab 4097 . 2 𝑥{⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧 = 𝐵)}
81, 7nfcxfr 2333 1 𝑥(𝑦𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wcel 2164  wnfc 2323  {copab 4089  cmpt 4090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-opab 4091  df-mpt 4092
This theorem is referenced by:  nfof  6136  nffrec  6449  mapxpen  6904  nfsum1  11499  nfsum  11500  nfcprod1  11697  nfcprod  11698  ctiunct  12597  fsumcncntop  14724  limcmpted  14817
  Copyright terms: Public domain W3C validator