ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmpt GIF version

Theorem nfmpt 4175
Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.)
Hypotheses
Ref Expression
nfmpt.1 𝑥𝐴
nfmpt.2 𝑥𝐵
Assertion
Ref Expression
nfmpt 𝑥(𝑦𝐴𝐵)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-mpt 4146 . 2 (𝑦𝐴𝐵) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧 = 𝐵)}
2 nfmpt.1 . . . . 5 𝑥𝐴
32nfcri 2366 . . . 4 𝑥 𝑦𝐴
4 nfmpt.2 . . . . 5 𝑥𝐵
54nfeq2 2384 . . . 4 𝑥 𝑧 = 𝐵
63, 5nfan 1611 . . 3 𝑥(𝑦𝐴𝑧 = 𝐵)
76nfopab 4151 . 2 𝑥{⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧 = 𝐵)}
81, 7nfcxfr 2369 1 𝑥(𝑦𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wcel 2200  wnfc 2359  {copab 4143  cmpt 4144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-opab 4145  df-mpt 4146
This theorem is referenced by:  nfof  6222  nffrec  6540  mapxpen  7005  nfsum1  11862  nfsum  11863  nfcprod1  12060  nfcprod  12061  ctiunct  13006  fsumcncntop  15235  limcmpted  15331  dvmptfsum  15393
  Copyright terms: Public domain W3C validator