ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmpt GIF version

Theorem nfmpt 4143
Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.)
Hypotheses
Ref Expression
nfmpt.1 𝑥𝐴
nfmpt.2 𝑥𝐵
Assertion
Ref Expression
nfmpt 𝑥(𝑦𝐴𝐵)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-mpt 4114 . 2 (𝑦𝐴𝐵) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧 = 𝐵)}
2 nfmpt.1 . . . . 5 𝑥𝐴
32nfcri 2343 . . . 4 𝑥 𝑦𝐴
4 nfmpt.2 . . . . 5 𝑥𝐵
54nfeq2 2361 . . . 4 𝑥 𝑧 = 𝐵
63, 5nfan 1589 . . 3 𝑥(𝑦𝐴𝑧 = 𝐵)
76nfopab 4119 . 2 𝑥{⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧 = 𝐵)}
81, 7nfcxfr 2346 1 𝑥(𝑦𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1373  wcel 2177  wnfc 2336  {copab 4111  cmpt 4112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-opab 4113  df-mpt 4114
This theorem is referenced by:  nfof  6176  nffrec  6494  mapxpen  6959  nfsum1  11737  nfsum  11738  nfcprod1  11935  nfcprod  11936  ctiunct  12881  fsumcncntop  15109  limcmpted  15205  dvmptfsum  15267
  Copyright terms: Public domain W3C validator