Step | Hyp | Ref
| Expression |
1 | | caucvgsr.f |
. . . 4
⊢ (𝜑 → 𝐹:N⟶R) |
2 | | caucvgsr.cau |
. . . 4
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R )))) |
3 | | caucvgsrlemgt1.gt1 |
. . . 4
⊢ (𝜑 → ∀𝑚 ∈ N
1R <R (𝐹‘𝑚)) |
4 | | eqid 2170 |
. . . 4
⊢ (𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R )) = (𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R )) |
5 | 1, 2, 3, 4 | caucvgsrlemf 7754 |
. . 3
⊢ (𝜑 → (𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R
)):N⟶P) |
6 | 1, 2, 3, 4 | caucvgsrlemcau 7755 |
. . 3
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑛)<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∧ ((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉)))) |
7 | 1, 2, 3, 4 | caucvgsrlembound 7756 |
. . 3
⊢ (𝜑 → ∀𝑚 ∈ N
1P<P ((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑚)) |
8 | 5, 6, 7 | caucvgprpr 7674 |
. 2
⊢ (𝜑 → ∃𝑎 ∈ P ∀𝑏 ∈ P
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏)))) |
9 | | prsrcl 7746 |
. . . 4
⊢ (𝑎 ∈ P →
[〈(𝑎
+P 1P),
1P〉] ~R ∈
R) |
10 | 9 | ad2antrl 487 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ P ∧ ∀𝑏 ∈ P
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) → [〈(𝑎 +P
1P), 1P〉]
~R ∈ R) |
11 | | oveq2 5861 |
. . . . . . . . . . . 12
⊢ (𝑏 = (℩𝑐 ∈ P
[〈(𝑐
+P 1P),
1P〉] ~R = 𝑥) → (𝑎 +P 𝑏) = (𝑎 +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥))) |
12 | 11 | breq2d 4001 |
. . . . . . . . . . 11
⊢ (𝑏 = (℩𝑐 ∈ P
[〈(𝑐
+P 1P),
1P〉] ~R = 𝑥) → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ↔ ((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)))) |
13 | | oveq2 5861 |
. . . . . . . . . . . 12
⊢ (𝑏 = (℩𝑐 ∈ P
[〈(𝑐
+P 1P),
1P〉] ~R = 𝑥) → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏) = (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥))) |
14 | 13 | breq2d 4001 |
. . . . . . . . . . 11
⊢ (𝑏 = (℩𝑐 ∈ P
[〈(𝑐
+P 1P),
1P〉] ~R = 𝑥) → (𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏) ↔ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)))) |
15 | 12, 14 | anbi12d 470 |
. . . . . . . . . 10
⊢ (𝑏 = (℩𝑐 ∈ P
[〈(𝑐
+P 1P),
1P〉] ~R = 𝑥) → ((((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏)) ↔ (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥))))) |
16 | 15 | imbi2d 229 |
. . . . . . . . 9
⊢ (𝑏 = (℩𝑐 ∈ P
[〈(𝑐
+P 1P),
1P〉] ~R = 𝑥) → ((𝑗 <N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))) ↔ (𝑗 <N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)))))) |
17 | 16 | rexralbidv 2496 |
. . . . . . . 8
⊢ (𝑏 = (℩𝑐 ∈ P
[〈(𝑐
+P 1P),
1P〉] ~R = 𝑥) → (∃𝑗 ∈ N
∀𝑘 ∈
N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))) ↔ ∃𝑗 ∈ N
∀𝑘 ∈
N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)))))) |
18 | | simplrr 531 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ P ∧ ∀𝑏 ∈ P
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) → ∀𝑏 ∈ P
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏)))) |
19 | 18 | adantr 274 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑎 ∈ P ∧ ∀𝑏 ∈ P
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) → ∀𝑏 ∈ P ∃𝑗 ∈ N
∀𝑘 ∈
N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏)))) |
20 | | srpospr 7745 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ R ∧
0R <R 𝑥) → ∃!𝑐 ∈ P [〈(𝑐 +P
1P), 1P〉]
~R = 𝑥) |
21 | | riotacl 5823 |
. . . . . . . . . 10
⊢
(∃!𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥 → (℩𝑐 ∈ P
[〈(𝑐
+P 1P),
1P〉] ~R = 𝑥) ∈
P) |
22 | 20, 21 | syl 14 |
. . . . . . . . 9
⊢ ((𝑥 ∈ R ∧
0R <R 𝑥) → (℩𝑐 ∈ P [〈(𝑐 +P
1P), 1P〉]
~R = 𝑥) ∈ P) |
23 | 22 | adantll 473 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑎 ∈ P ∧ ∀𝑏 ∈ P
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) → (℩𝑐 ∈ P [〈(𝑐 +P
1P), 1P〉]
~R = 𝑥) ∈ P) |
24 | 17, 19, 23 | rspcdva 2839 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑎 ∈ P ∧ ∀𝑏 ∈ P
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) → ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N
𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥))))) |
25 | | nfv 1521 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗𝜑 |
26 | | nfv 1521 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗 𝑎 ∈
P |
27 | | nfcv 2312 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗P |
28 | | nfre1 2513 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗∃𝑗 ∈ N
∀𝑘 ∈
N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))) |
29 | 27, 28 | nfralya 2510 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗∀𝑏 ∈ P ∃𝑗 ∈ N
∀𝑘 ∈
N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))) |
30 | 26, 29 | nfan 1558 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗(𝑎 ∈ P ∧
∀𝑏 ∈
P ∃𝑗
∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏)))) |
31 | 25, 30 | nfan 1558 |
. . . . . . . . . 10
⊢
Ⅎ𝑗(𝜑 ∧ (𝑎 ∈ P ∧ ∀𝑏 ∈ P
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) |
32 | | nfv 1521 |
. . . . . . . . . 10
⊢
Ⅎ𝑗 𝑥 ∈
R |
33 | 31, 32 | nfan 1558 |
. . . . . . . . 9
⊢
Ⅎ𝑗((𝜑 ∧ (𝑎 ∈ P ∧ ∀𝑏 ∈ P
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) |
34 | | nfv 1521 |
. . . . . . . . 9
⊢
Ⅎ𝑗0R
<R 𝑥 |
35 | 33, 34 | nfan 1558 |
. . . . . . . 8
⊢
Ⅎ𝑗(((𝜑 ∧ (𝑎 ∈ P ∧ ∀𝑏 ∈ P
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) |
36 | | nfv 1521 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘𝜑 |
37 | | nfv 1521 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘 𝑎 ∈
P |
38 | | nfcv 2312 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘P |
39 | | nfcv 2312 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘N |
40 | | nfra1 2501 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘∀𝑘 ∈ N (𝑗 <N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))) |
41 | 39, 40 | nfrexya 2511 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘∃𝑗 ∈ N
∀𝑘 ∈
N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))) |
42 | 38, 41 | nfralya 2510 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘∀𝑏 ∈ P ∃𝑗 ∈ N
∀𝑘 ∈
N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))) |
43 | 37, 42 | nfan 1558 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘(𝑎 ∈ P ∧
∀𝑏 ∈
P ∃𝑗
∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏)))) |
44 | 36, 43 | nfan 1558 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝜑 ∧ (𝑎 ∈ P ∧ ∀𝑏 ∈ P
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) |
45 | | nfv 1521 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘 𝑥 ∈
R |
46 | 44, 45 | nfan 1558 |
. . . . . . . . . 10
⊢
Ⅎ𝑘((𝜑 ∧ (𝑎 ∈ P ∧ ∀𝑏 ∈ P
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) |
47 | | nfv 1521 |
. . . . . . . . . 10
⊢
Ⅎ𝑘0R
<R 𝑥 |
48 | 46, 47 | nfan 1558 |
. . . . . . . . 9
⊢
Ⅎ𝑘(((𝜑 ∧ (𝑎 ∈ P ∧ ∀𝑏 ∈ P
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) |
49 | 5 | ad4antr 491 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝑎 ∈ P ∧
∀𝑏 ∈
P ∃𝑗
∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) ∧ 𝑘 ∈ N) → (𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R
)):N⟶P) |
50 | | simpr 109 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝑎 ∈ P ∧
∀𝑏 ∈
P ∃𝑗
∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) ∧ 𝑘 ∈ N) → 𝑘 ∈
N) |
51 | 49, 50 | ffvelrnd 5632 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑎 ∈ P ∧
∀𝑏 ∈
P ∃𝑗
∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) ∧ 𝑘 ∈ N) → ((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) ∈ P) |
52 | | simplrl 530 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑎 ∈ P ∧ ∀𝑏 ∈ P
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) → 𝑎 ∈
P) |
53 | 52 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑎 ∈ P ∧ ∀𝑏 ∈ P
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) → 𝑎 ∈ P) |
54 | | addclpr 7499 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ P ∧
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥) ∈ P) →
(𝑎
+P (℩𝑐 ∈ P [〈(𝑐 +P
1P), 1P〉]
~R = 𝑥)) ∈ P) |
55 | 53, 23, 54 | syl2anc 409 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑎 ∈ P ∧ ∀𝑏 ∈ P
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) → (𝑎 +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) ∈
P) |
56 | 55 | adantr 274 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑎 ∈ P ∧
∀𝑏 ∈
P ∃𝑗
∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) ∧ 𝑘 ∈ N) → (𝑎 +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) ∈
P) |
57 | | prsrlt 7749 |
. . . . . . . . . . . . 13
⊢ ((((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) ∈ P ∧ (𝑎 +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) ∈ P)
→ (((𝑧 ∈
N ↦ (℩𝑤 ∈ P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) ↔ [〈(((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
1P), 1P〉]
~R <R [〈((𝑎 +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) +P
1P), 1P〉]
~R )) |
58 | 51, 56, 57 | syl2anc 409 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑎 ∈ P ∧
∀𝑏 ∈
P ∃𝑗
∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) ∧ 𝑘 ∈ N) → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) ↔ [〈(((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
1P), 1P〉]
~R <R [〈((𝑎 +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) +P
1P), 1P〉]
~R )) |
59 | 1, 2, 3, 4 | caucvgsrlemfv 7753 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ N) →
[〈(((𝑧 ∈
N ↦ (℩𝑤 ∈ P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
1P), 1P〉]
~R = (𝐹‘𝑘)) |
60 | 59 | adantlr 474 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑎 ∈ P ∧ ∀𝑏 ∈ P
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑘 ∈ N) →
[〈(((𝑧 ∈
N ↦ (℩𝑤 ∈ P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
1P), 1P〉]
~R = (𝐹‘𝑘)) |
61 | 60 | adantlr 474 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑎 ∈ P ∧ ∀𝑏 ∈ P
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧ 𝑘 ∈ N) →
[〈(((𝑧 ∈
N ↦ (℩𝑤 ∈ P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
1P), 1P〉]
~R = (𝐹‘𝑘)) |
62 | 61 | adantlr 474 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑎 ∈ P ∧
∀𝑏 ∈
P ∃𝑗
∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) ∧ 𝑘 ∈ N) →
[〈(((𝑧 ∈
N ↦ (℩𝑤 ∈ P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
1P), 1P〉]
~R = (𝐹‘𝑘)) |
63 | | prsradd 7748 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ P ∧
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥) ∈ P) →
[〈((𝑎
+P (℩𝑐 ∈ P [〈(𝑐 +P
1P), 1P〉]
~R = 𝑥)) +P
1P), 1P〉]
~R = ([〈(𝑎 +P
1P), 1P〉]
~R +R
[〈((℩𝑐
∈ P [〈(𝑐 +P
1P), 1P〉]
~R = 𝑥) +P
1P), 1P〉]
~R )) |
64 | 53, 23, 63 | syl2anc 409 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑎 ∈ P ∧ ∀𝑏 ∈ P
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) → [〈((𝑎 +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) +P
1P), 1P〉]
~R = ([〈(𝑎 +P
1P), 1P〉]
~R +R
[〈((℩𝑐
∈ P [〈(𝑐 +P
1P), 1P〉]
~R = 𝑥) +P
1P), 1P〉]
~R )) |
65 | | prsrriota 7750 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ R ∧
0R <R 𝑥) → [〈((℩𝑐 ∈ P
[〈(𝑐
+P 1P),
1P〉] ~R = 𝑥) +P
1P), 1P〉]
~R = 𝑥) |
66 | 65 | oveq2d 5869 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ R ∧
0R <R 𝑥) → ([〈(𝑎 +P
1P), 1P〉]
~R +R
[〈((℩𝑐
∈ P [〈(𝑐 +P
1P), 1P〉]
~R = 𝑥) +P
1P), 1P〉]
~R ) = ([〈(𝑎 +P
1P), 1P〉]
~R +R 𝑥)) |
67 | 66 | adantll 473 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑎 ∈ P ∧ ∀𝑏 ∈ P
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) → ([〈(𝑎 +P
1P), 1P〉]
~R +R
[〈((℩𝑐
∈ P [〈(𝑐 +P
1P), 1P〉]
~R = 𝑥) +P
1P), 1P〉]
~R ) = ([〈(𝑎 +P
1P), 1P〉]
~R +R 𝑥)) |
68 | 64, 67 | eqtrd 2203 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑎 ∈ P ∧ ∀𝑏 ∈ P
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) → [〈((𝑎 +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) +P
1P), 1P〉]
~R = ([〈(𝑎 +P
1P), 1P〉]
~R +R 𝑥)) |
69 | 68 | adantr 274 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑎 ∈ P ∧
∀𝑏 ∈
P ∃𝑗
∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) ∧ 𝑘 ∈ N) →
[〈((𝑎
+P (℩𝑐 ∈ P [〈(𝑐 +P
1P), 1P〉]
~R = 𝑥)) +P
1P), 1P〉]
~R = ([〈(𝑎 +P
1P), 1P〉]
~R +R 𝑥)) |
70 | 62, 69 | breq12d 4002 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑎 ∈ P ∧
∀𝑏 ∈
P ∃𝑗
∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) ∧ 𝑘 ∈ N) →
([〈(((𝑧 ∈
N ↦ (℩𝑤 ∈ P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
1P), 1P〉]
~R <R [〈((𝑎 +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) +P
1P), 1P〉]
~R ↔ (𝐹‘𝑘) <R
([〈(𝑎
+P 1P),
1P〉] ~R
+R 𝑥))) |
71 | 58, 70 | bitrd 187 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑎 ∈ P ∧
∀𝑏 ∈
P ∃𝑗
∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) ∧ 𝑘 ∈ N) → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) ↔ (𝐹‘𝑘) <R
([〈(𝑎
+P 1P),
1P〉] ~R
+R 𝑥))) |
72 | 53 | adantr 274 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑎 ∈ P ∧
∀𝑏 ∈
P ∃𝑗
∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) ∧ 𝑘 ∈ N) → 𝑎 ∈
P) |
73 | 23 | adantr 274 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝑎 ∈ P ∧
∀𝑏 ∈
P ∃𝑗
∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) ∧ 𝑘 ∈ N) →
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥) ∈
P) |
74 | | addclpr 7499 |
. . . . . . . . . . . . . 14
⊢ ((((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) ∈ P ∧
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥) ∈ P) →
(((𝑧 ∈ N
↦ (℩𝑤
∈ P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) ∈
P) |
75 | 51, 73, 74 | syl2anc 409 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑎 ∈ P ∧
∀𝑏 ∈
P ∃𝑗
∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) ∧ 𝑘 ∈ N) → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) ∈
P) |
76 | | prsrlt 7749 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ P ∧
(((𝑧 ∈ N
↦ (℩𝑤
∈ P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) ∈ P)
→ (𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) ↔ [〈(𝑎 +P
1P), 1P〉]
~R <R [〈((((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) +P
1P), 1P〉]
~R )) |
77 | 72, 75, 76 | syl2anc 409 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑎 ∈ P ∧
∀𝑏 ∈
P ∃𝑗
∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) ∧ 𝑘 ∈ N) → (𝑎<P
(((𝑧 ∈ N
↦ (℩𝑤
∈ P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) ↔ [〈(𝑎 +P
1P), 1P〉]
~R <R [〈((((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) +P
1P), 1P〉]
~R )) |
78 | | prsradd 7748 |
. . . . . . . . . . . . . 14
⊢ ((((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) ∈ P ∧
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥) ∈ P) →
[〈((((𝑧 ∈
N ↦ (℩𝑤 ∈ P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) +P
1P), 1P〉]
~R = ([〈(((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
1P), 1P〉]
~R +R
[〈((℩𝑐
∈ P [〈(𝑐 +P
1P), 1P〉]
~R = 𝑥) +P
1P), 1P〉]
~R )) |
79 | 51, 73, 78 | syl2anc 409 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑎 ∈ P ∧
∀𝑏 ∈
P ∃𝑗
∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) ∧ 𝑘 ∈ N) →
[〈((((𝑧 ∈
N ↦ (℩𝑤 ∈ P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) +P
1P), 1P〉]
~R = ([〈(((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
1P), 1P〉]
~R +R
[〈((℩𝑐
∈ P [〈(𝑐 +P
1P), 1P〉]
~R = 𝑥) +P
1P), 1P〉]
~R )) |
80 | 79 | breq2d 4001 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑎 ∈ P ∧
∀𝑏 ∈
P ∃𝑗
∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) ∧ 𝑘 ∈ N) →
([〈(𝑎
+P 1P),
1P〉] ~R
<R [〈((((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) +P
1P), 1P〉]
~R ↔ [〈(𝑎 +P
1P), 1P〉]
~R <R ([〈(((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
1P), 1P〉]
~R +R
[〈((℩𝑐
∈ P [〈(𝑐 +P
1P), 1P〉]
~R = 𝑥) +P
1P), 1P〉]
~R ))) |
81 | 65 | adantll 473 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑎 ∈ P ∧ ∀𝑏 ∈ P
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) → [〈((℩𝑐 ∈ P
[〈(𝑐
+P 1P),
1P〉] ~R = 𝑥) +P
1P), 1P〉]
~R = 𝑥) |
82 | 81 | adantr 274 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝑎 ∈ P ∧
∀𝑏 ∈
P ∃𝑗
∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) ∧ 𝑘 ∈ N) →
[〈((℩𝑐
∈ P [〈(𝑐 +P
1P), 1P〉]
~R = 𝑥) +P
1P), 1P〉]
~R = 𝑥) |
83 | 62, 82 | oveq12d 5871 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑎 ∈ P ∧
∀𝑏 ∈
P ∃𝑗
∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) ∧ 𝑘 ∈ N) →
([〈(((𝑧 ∈
N ↦ (℩𝑤 ∈ P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
1P), 1P〉]
~R +R
[〈((℩𝑐
∈ P [〈(𝑐 +P
1P), 1P〉]
~R = 𝑥) +P
1P), 1P〉]
~R ) = ((𝐹‘𝑘) +R 𝑥)) |
84 | 83 | breq2d 4001 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑎 ∈ P ∧
∀𝑏 ∈
P ∃𝑗
∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) ∧ 𝑘 ∈ N) →
([〈(𝑎
+P 1P),
1P〉] ~R
<R ([〈(((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
1P), 1P〉]
~R +R
[〈((℩𝑐
∈ P [〈(𝑐 +P
1P), 1P〉]
~R = 𝑥) +P
1P), 1P〉]
~R ) ↔ [〈(𝑎 +P
1P), 1P〉]
~R <R ((𝐹‘𝑘) +R 𝑥))) |
85 | 77, 80, 84 | 3bitrd 213 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑎 ∈ P ∧
∀𝑏 ∈
P ∃𝑗
∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) ∧ 𝑘 ∈ N) → (𝑎<P
(((𝑧 ∈ N
↦ (℩𝑤
∈ P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) ↔ [〈(𝑎 +P
1P), 1P〉]
~R <R ((𝐹‘𝑘) +R 𝑥))) |
86 | 71, 85 | anbi12d 470 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑎 ∈ P ∧
∀𝑏 ∈
P ∃𝑗
∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) ∧ 𝑘 ∈ N) → ((((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥))) ↔ ((𝐹‘𝑘) <R
([〈(𝑎
+P 1P),
1P〉] ~R
+R 𝑥) ∧ [〈(𝑎 +P
1P), 1P〉]
~R <R ((𝐹‘𝑘) +R 𝑥)))) |
87 | 86 | imbi2d 229 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑎 ∈ P ∧
∀𝑏 ∈
P ∃𝑗
∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) ∧ 𝑘 ∈ N) → ((𝑗 <N
𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)))) ↔ (𝑗 <N 𝑘 → ((𝐹‘𝑘) <R
([〈(𝑎
+P 1P),
1P〉] ~R
+R 𝑥) ∧ [〈(𝑎 +P
1P), 1P〉]
~R <R ((𝐹‘𝑘) +R 𝑥))))) |
88 | 48, 87 | ralbida 2464 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑎 ∈ P ∧ ∀𝑏 ∈ P
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) → (∀𝑘 ∈ N (𝑗 <N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)))) ↔ ∀𝑘 ∈ N (𝑗 <N
𝑘 → ((𝐹‘𝑘) <R
([〈(𝑎
+P 1P),
1P〉] ~R
+R 𝑥) ∧ [〈(𝑎 +P
1P), 1P〉]
~R <R ((𝐹‘𝑘) +R 𝑥))))) |
89 | 35, 88 | rexbid 2469 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑎 ∈ P ∧ ∀𝑏 ∈ P
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) → (∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N
𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P
(℩𝑐 ∈
P [〈(𝑐
+P 1P),
1P〉] ~R = 𝑥)))) ↔ ∃𝑗 ∈ N
∀𝑘 ∈
N (𝑗
<N 𝑘 → ((𝐹‘𝑘) <R
([〈(𝑎
+P 1P),
1P〉] ~R
+R 𝑥) ∧ [〈(𝑎 +P
1P), 1P〉]
~R <R ((𝐹‘𝑘) +R 𝑥))))) |
90 | 24, 89 | mpbid 146 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑎 ∈ P ∧ ∀𝑏 ∈ P
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) → ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N
𝑘 → ((𝐹‘𝑘) <R
([〈(𝑎
+P 1P),
1P〉] ~R
+R 𝑥) ∧ [〈(𝑎 +P
1P), 1P〉]
~R <R ((𝐹‘𝑘) +R 𝑥)))) |
91 | | breq2 3993 |
. . . . . . . . 9
⊢ (𝑘 = 𝑖 → (𝑗 <N 𝑘 ↔ 𝑗 <N 𝑖)) |
92 | | fveq2 5496 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑖 → (𝐹‘𝑘) = (𝐹‘𝑖)) |
93 | 92 | breq1d 3999 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑖 → ((𝐹‘𝑘) <R
([〈(𝑎
+P 1P),
1P〉] ~R
+R 𝑥) ↔ (𝐹‘𝑖) <R
([〈(𝑎
+P 1P),
1P〉] ~R
+R 𝑥))) |
94 | 92 | oveq1d 5868 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑖 → ((𝐹‘𝑘) +R 𝑥) = ((𝐹‘𝑖) +R 𝑥)) |
95 | 94 | breq2d 4001 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑖 → ([〈(𝑎 +P
1P), 1P〉]
~R <R ((𝐹‘𝑘) +R 𝑥) ↔ [〈(𝑎 +P
1P), 1P〉]
~R <R ((𝐹‘𝑖) +R 𝑥))) |
96 | 93, 95 | anbi12d 470 |
. . . . . . . . 9
⊢ (𝑘 = 𝑖 → (((𝐹‘𝑘) <R
([〈(𝑎
+P 1P),
1P〉] ~R
+R 𝑥) ∧ [〈(𝑎 +P
1P), 1P〉]
~R <R ((𝐹‘𝑘) +R 𝑥)) ↔ ((𝐹‘𝑖) <R
([〈(𝑎
+P 1P),
1P〉] ~R
+R 𝑥) ∧ [〈(𝑎 +P
1P), 1P〉]
~R <R ((𝐹‘𝑖) +R 𝑥)))) |
97 | 91, 96 | imbi12d 233 |
. . . . . . . 8
⊢ (𝑘 = 𝑖 → ((𝑗 <N 𝑘 → ((𝐹‘𝑘) <R
([〈(𝑎
+P 1P),
1P〉] ~R
+R 𝑥) ∧ [〈(𝑎 +P
1P), 1P〉]
~R <R ((𝐹‘𝑘) +R 𝑥))) ↔ (𝑗 <N 𝑖 → ((𝐹‘𝑖) <R
([〈(𝑎
+P 1P),
1P〉] ~R
+R 𝑥) ∧ [〈(𝑎 +P
1P), 1P〉]
~R <R ((𝐹‘𝑖) +R 𝑥))))) |
98 | 97 | cbvralv 2696 |
. . . . . . 7
⊢
(∀𝑘 ∈
N (𝑗
<N 𝑘 → ((𝐹‘𝑘) <R
([〈(𝑎
+P 1P),
1P〉] ~R
+R 𝑥) ∧ [〈(𝑎 +P
1P), 1P〉]
~R <R ((𝐹‘𝑘) +R 𝑥))) ↔ ∀𝑖 ∈ N (𝑗 <N
𝑖 → ((𝐹‘𝑖) <R
([〈(𝑎
+P 1P),
1P〉] ~R
+R 𝑥) ∧ [〈(𝑎 +P
1P), 1P〉]
~R <R ((𝐹‘𝑖) +R 𝑥)))) |
99 | 98 | rexbii 2477 |
. . . . . 6
⊢
(∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → ((𝐹‘𝑘) <R
([〈(𝑎
+P 1P),
1P〉] ~R
+R 𝑥) ∧ [〈(𝑎 +P
1P), 1P〉]
~R <R ((𝐹‘𝑘) +R 𝑥))) ↔ ∃𝑗 ∈ N
∀𝑖 ∈
N (𝑗
<N 𝑖 → ((𝐹‘𝑖) <R
([〈(𝑎
+P 1P),
1P〉] ~R
+R 𝑥) ∧ [〈(𝑎 +P
1P), 1P〉]
~R <R ((𝐹‘𝑖) +R 𝑥)))) |
100 | 90, 99 | sylib 121 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑎 ∈ P ∧ ∀𝑏 ∈ P
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) ∧
0R <R 𝑥) → ∃𝑗 ∈ N ∀𝑖 ∈ N (𝑗 <N
𝑖 → ((𝐹‘𝑖) <R
([〈(𝑎
+P 1P),
1P〉] ~R
+R 𝑥) ∧ [〈(𝑎 +P
1P), 1P〉]
~R <R ((𝐹‘𝑖) +R 𝑥)))) |
101 | 100 | ex 114 |
. . . 4
⊢ (((𝜑 ∧ (𝑎 ∈ P ∧ ∀𝑏 ∈ P
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥 ∈ R) →
(0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑖 ∈ N (𝑗 <N
𝑖 → ((𝐹‘𝑖) <R
([〈(𝑎
+P 1P),
1P〉] ~R
+R 𝑥) ∧ [〈(𝑎 +P
1P), 1P〉]
~R <R ((𝐹‘𝑖) +R 𝑥))))) |
102 | 101 | ralrimiva 2543 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ P ∧ ∀𝑏 ∈ P
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) → ∀𝑥 ∈ R
(0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑖 ∈ N (𝑗 <N
𝑖 → ((𝐹‘𝑖) <R
([〈(𝑎
+P 1P),
1P〉] ~R
+R 𝑥) ∧ [〈(𝑎 +P
1P), 1P〉]
~R <R ((𝐹‘𝑖) +R 𝑥))))) |
103 | | oveq1 5860 |
. . . . . . . . . 10
⊢ (𝑦 = [〈(𝑎 +P
1P), 1P〉]
~R → (𝑦 +R 𝑥) = ([〈(𝑎 +P
1P), 1P〉]
~R +R 𝑥)) |
104 | 103 | breq2d 4001 |
. . . . . . . . 9
⊢ (𝑦 = [〈(𝑎 +P
1P), 1P〉]
~R → ((𝐹‘𝑖) <R (𝑦 +R
𝑥) ↔ (𝐹‘𝑖) <R
([〈(𝑎
+P 1P),
1P〉] ~R
+R 𝑥))) |
105 | | breq1 3992 |
. . . . . . . . 9
⊢ (𝑦 = [〈(𝑎 +P
1P), 1P〉]
~R → (𝑦 <R ((𝐹‘𝑖) +R 𝑥) ↔ [〈(𝑎 +P
1P), 1P〉]
~R <R ((𝐹‘𝑖) +R 𝑥))) |
106 | 104, 105 | anbi12d 470 |
. . . . . . . 8
⊢ (𝑦 = [〈(𝑎 +P
1P), 1P〉]
~R → (((𝐹‘𝑖) <R (𝑦 +R
𝑥) ∧ 𝑦 <R ((𝐹‘𝑖) +R 𝑥)) ↔ ((𝐹‘𝑖) <R
([〈(𝑎
+P 1P),
1P〉] ~R
+R 𝑥) ∧ [〈(𝑎 +P
1P), 1P〉]
~R <R ((𝐹‘𝑖) +R 𝑥)))) |
107 | 106 | imbi2d 229 |
. . . . . . 7
⊢ (𝑦 = [〈(𝑎 +P
1P), 1P〉]
~R → ((𝑗 <N 𝑖 → ((𝐹‘𝑖) <R (𝑦 +R
𝑥) ∧ 𝑦 <R ((𝐹‘𝑖) +R 𝑥))) ↔ (𝑗 <N 𝑖 → ((𝐹‘𝑖) <R
([〈(𝑎
+P 1P),
1P〉] ~R
+R 𝑥) ∧ [〈(𝑎 +P
1P), 1P〉]
~R <R ((𝐹‘𝑖) +R 𝑥))))) |
108 | 107 | rexralbidv 2496 |
. . . . . 6
⊢ (𝑦 = [〈(𝑎 +P
1P), 1P〉]
~R → (∃𝑗 ∈ N ∀𝑖 ∈ N (𝑗 <N
𝑖 → ((𝐹‘𝑖) <R (𝑦 +R
𝑥) ∧ 𝑦 <R ((𝐹‘𝑖) +R 𝑥))) ↔ ∃𝑗 ∈ N
∀𝑖 ∈
N (𝑗
<N 𝑖 → ((𝐹‘𝑖) <R
([〈(𝑎
+P 1P),
1P〉] ~R
+R 𝑥) ∧ [〈(𝑎 +P
1P), 1P〉]
~R <R ((𝐹‘𝑖) +R 𝑥))))) |
109 | 108 | imbi2d 229 |
. . . . 5
⊢ (𝑦 = [〈(𝑎 +P
1P), 1P〉]
~R → ((0R
<R 𝑥 → ∃𝑗 ∈ N ∀𝑖 ∈ N (𝑗 <N
𝑖 → ((𝐹‘𝑖) <R (𝑦 +R
𝑥) ∧ 𝑦 <R ((𝐹‘𝑖) +R 𝑥)))) ↔
(0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑖 ∈ N (𝑗 <N
𝑖 → ((𝐹‘𝑖) <R
([〈(𝑎
+P 1P),
1P〉] ~R
+R 𝑥) ∧ [〈(𝑎 +P
1P), 1P〉]
~R <R ((𝐹‘𝑖) +R 𝑥)))))) |
110 | 109 | ralbidv 2470 |
. . . 4
⊢ (𝑦 = [〈(𝑎 +P
1P), 1P〉]
~R → (∀𝑥 ∈ R
(0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑖 ∈ N (𝑗 <N
𝑖 → ((𝐹‘𝑖) <R (𝑦 +R
𝑥) ∧ 𝑦 <R ((𝐹‘𝑖) +R 𝑥)))) ↔ ∀𝑥 ∈ R
(0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑖 ∈ N (𝑗 <N
𝑖 → ((𝐹‘𝑖) <R
([〈(𝑎
+P 1P),
1P〉] ~R
+R 𝑥) ∧ [〈(𝑎 +P
1P), 1P〉]
~R <R ((𝐹‘𝑖) +R 𝑥)))))) |
111 | 110 | rspcev 2834 |
. . 3
⊢
(([〈(𝑎
+P 1P),
1P〉] ~R ∈
R ∧ ∀𝑥 ∈ R
(0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑖 ∈ N (𝑗 <N
𝑖 → ((𝐹‘𝑖) <R
([〈(𝑎
+P 1P),
1P〉] ~R
+R 𝑥) ∧ [〈(𝑎 +P
1P), 1P〉]
~R <R ((𝐹‘𝑖) +R 𝑥))))) → ∃𝑦 ∈ R
∀𝑥 ∈
R (0R <R
𝑥 → ∃𝑗 ∈ N
∀𝑖 ∈
N (𝑗
<N 𝑖 → ((𝐹‘𝑖) <R (𝑦 +R
𝑥) ∧ 𝑦 <R ((𝐹‘𝑖) +R 𝑥))))) |
112 | 10, 102, 111 | syl2anc 409 |
. 2
⊢ ((𝜑 ∧ (𝑎 ∈ P ∧ ∀𝑏 ∈ P
∃𝑗 ∈
N ∀𝑘
∈ N (𝑗
<N 𝑘 → (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘)<P (𝑎 +P
𝑏) ∧ 𝑎<P (((𝑧 ∈ N ↦
(℩𝑤 ∈
P (𝐹‘𝑧) = [〈(𝑤 +P
1P), 1P〉]
~R ))‘𝑘) +P 𝑏))))) → ∃𝑦 ∈ R
∀𝑥 ∈
R (0R <R
𝑥 → ∃𝑗 ∈ N
∀𝑖 ∈
N (𝑗
<N 𝑖 → ((𝐹‘𝑖) <R (𝑦 +R
𝑥) ∧ 𝑦 <R ((𝐹‘𝑖) +R 𝑥))))) |
113 | 8, 112 | rexlimddv 2592 |
1
⊢ (𝜑 → ∃𝑦 ∈ R ∀𝑥 ∈ R
(0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑖 ∈ N (𝑗 <N
𝑖 → ((𝐹‘𝑖) <R (𝑦 +R
𝑥) ∧ 𝑦 <R ((𝐹‘𝑖) +R 𝑥))))) |