ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemgt1 GIF version

Theorem caucvgsrlemgt1 7796
Description: Lemma for caucvgsr 7803. A Cauchy sequence whose terms are greater than one converges. (Contributed by Jim Kingdon, 22-Jun-2021.)
Hypotheses
Ref Expression
caucvgsr.f (𝜑𝐹:NR)
caucvgsr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
caucvgsrlemgt1.gt1 (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))
Assertion
Ref Expression
caucvgsrlemgt1 (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐹𝑖) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑖) +R 𝑥)))))
Distinct variable groups:   𝑗,𝐹,𝑘,𝑙,𝑢   𝑖,𝐹,𝑥,𝑗,𝑘   𝑚,𝐹,𝑛,𝑘   𝑛,𝑙,𝑢   𝑦,𝐹,𝑖,𝑗,𝑥   𝜑,𝑗,𝑘,𝑥   𝜑,𝑛   𝑘,𝑚,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑢,𝑖,𝑚,𝑙)

Proof of Theorem caucvgsrlemgt1
Dummy variables 𝑎 𝑏 𝑤 𝑧 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgsr.f . . . 4 (𝜑𝐹:NR)
2 caucvgsr.cau . . . 4 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
3 caucvgsrlemgt1.gt1 . . . 4 (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))
4 eqid 2177 . . . 4 (𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R )) = (𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))
51, 2, 3, 4caucvgsrlemf 7793 . . 3 (𝜑 → (𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R )):NP)
61, 2, 3, 4caucvgsrlemcau 7794 . . 3 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑛)<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ ((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
71, 2, 3, 4caucvgsrlembound 7795 . . 3 (𝜑 → ∀𝑚N 1P<P ((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑚))
85, 6, 7caucvgprpr 7713 . 2 (𝜑 → ∃𝑎P𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))
9 prsrcl 7785 . . . 4 (𝑎P → [⟨(𝑎 +P 1P), 1P⟩] ~RR)
109ad2antrl 490 . . 3 ((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) → [⟨(𝑎 +P 1P), 1P⟩] ~RR)
11 oveq2 5885 . . . . . . . . . . . 12 (𝑏 = (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥) → (𝑎 +P 𝑏) = (𝑎 +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)))
1211breq2d 4017 . . . . . . . . . . 11 (𝑏 = (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥) → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ↔ ((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥))))
13 oveq2 5885 . . . . . . . . . . . 12 (𝑏 = (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥) → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏) = (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)))
1413breq2d 4017 . . . . . . . . . . 11 (𝑏 = (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥) → (𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏) ↔ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥))))
1512, 14anbi12d 473 . . . . . . . . . 10 (𝑏 = (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥) → ((((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏)) ↔ (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)))))
1615imbi2d 230 . . . . . . . . 9 (𝑏 = (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥) → ((𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))) ↔ (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥))))))
1716rexralbidv 2503 . . . . . . . 8 (𝑏 = (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥) → (∃𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))) ↔ ∃𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥))))))
18 simplrr 536 . . . . . . . . 9 (((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) → ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))
1918adantr 276 . . . . . . . 8 ((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) → ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))
20 srpospr 7784 . . . . . . . . . 10 ((𝑥R ∧ 0R <R 𝑥) → ∃!𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)
21 riotacl 5847 . . . . . . . . . 10 (∃!𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥 → (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥) ∈ P)
2220, 21syl 14 . . . . . . . . 9 ((𝑥R ∧ 0R <R 𝑥) → (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥) ∈ P)
2322adantll 476 . . . . . . . 8 ((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) → (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥) ∈ P)
2417, 19, 23rspcdva 2848 . . . . . . 7 ((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) → ∃𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)))))
25 nfv 1528 . . . . . . . . . . 11 𝑗𝜑
26 nfv 1528 . . . . . . . . . . . 12 𝑗 𝑎P
27 nfcv 2319 . . . . . . . . . . . . 13 𝑗P
28 nfre1 2520 . . . . . . . . . . . . 13 𝑗𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏)))
2927, 28nfralya 2517 . . . . . . . . . . . 12 𝑗𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏)))
3026, 29nfan 1565 . . . . . . . . . . 11 𝑗(𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))
3125, 30nfan 1565 . . . . . . . . . 10 𝑗(𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏)))))
32 nfv 1528 . . . . . . . . . 10 𝑗 𝑥R
3331, 32nfan 1565 . . . . . . . . 9 𝑗((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R)
34 nfv 1528 . . . . . . . . 9 𝑗0R <R 𝑥
3533, 34nfan 1565 . . . . . . . 8 𝑗(((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥)
36 nfv 1528 . . . . . . . . . . . 12 𝑘𝜑
37 nfv 1528 . . . . . . . . . . . . 13 𝑘 𝑎P
38 nfcv 2319 . . . . . . . . . . . . . 14 𝑘P
39 nfcv 2319 . . . . . . . . . . . . . . 15 𝑘N
40 nfra1 2508 . . . . . . . . . . . . . . 15 𝑘𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏)))
4139, 40nfrexya 2518 . . . . . . . . . . . . . 14 𝑘𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏)))
4238, 41nfralya 2517 . . . . . . . . . . . . 13 𝑘𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏)))
4337, 42nfan 1565 . . . . . . . . . . . 12 𝑘(𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))
4436, 43nfan 1565 . . . . . . . . . . 11 𝑘(𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏)))))
45 nfv 1528 . . . . . . . . . . 11 𝑘 𝑥R
4644, 45nfan 1565 . . . . . . . . . 10 𝑘((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R)
47 nfv 1528 . . . . . . . . . 10 𝑘0R <R 𝑥
4846, 47nfan 1565 . . . . . . . . 9 𝑘(((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥)
495ad4antr 494 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) ∧ 𝑘N) → (𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R )):NP)
50 simpr 110 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) ∧ 𝑘N) → 𝑘N)
5149, 50ffvelcdmd 5654 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) ∧ 𝑘N) → ((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) ∈ P)
52 simplrl 535 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) → 𝑎P)
5352adantr 276 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) → 𝑎P)
54 addclpr 7538 . . . . . . . . . . . . . . 15 ((𝑎P ∧ (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥) ∈ P) → (𝑎 +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) ∈ P)
5553, 23, 54syl2anc 411 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) → (𝑎 +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) ∈ P)
5655adantr 276 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) ∧ 𝑘N) → (𝑎 +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) ∈ P)
57 prsrlt 7788 . . . . . . . . . . . . 13 ((((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) ∈ P ∧ (𝑎 +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) ∈ P) → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) ↔ [⟨(((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 1P), 1P⟩] ~R <R [⟨((𝑎 +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) +P 1P), 1P⟩] ~R ))
5851, 56, 57syl2anc 411 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) ∧ 𝑘N) → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) ↔ [⟨(((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 1P), 1P⟩] ~R <R [⟨((𝑎 +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) +P 1P), 1P⟩] ~R ))
591, 2, 3, 4caucvgsrlemfv 7792 . . . . . . . . . . . . . . . 16 ((𝜑𝑘N) → [⟨(((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 1P), 1P⟩] ~R = (𝐹𝑘))
6059adantlr 477 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑘N) → [⟨(((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 1P), 1P⟩] ~R = (𝐹𝑘))
6160adantlr 477 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 𝑘N) → [⟨(((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 1P), 1P⟩] ~R = (𝐹𝑘))
6261adantlr 477 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) ∧ 𝑘N) → [⟨(((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 1P), 1P⟩] ~R = (𝐹𝑘))
63 prsradd 7787 . . . . . . . . . . . . . . . 16 ((𝑎P ∧ (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥) ∈ P) → [⟨((𝑎 +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) +P 1P), 1P⟩] ~R = ([⟨(𝑎 +P 1P), 1P⟩] ~R +R [⟨((𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥) +P 1P), 1P⟩] ~R ))
6453, 23, 63syl2anc 411 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) → [⟨((𝑎 +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) +P 1P), 1P⟩] ~R = ([⟨(𝑎 +P 1P), 1P⟩] ~R +R [⟨((𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥) +P 1P), 1P⟩] ~R ))
65 prsrriota 7789 . . . . . . . . . . . . . . . . 17 ((𝑥R ∧ 0R <R 𝑥) → [⟨((𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥) +P 1P), 1P⟩] ~R = 𝑥)
6665oveq2d 5893 . . . . . . . . . . . . . . . 16 ((𝑥R ∧ 0R <R 𝑥) → ([⟨(𝑎 +P 1P), 1P⟩] ~R +R [⟨((𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥) +P 1P), 1P⟩] ~R ) = ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥))
6766adantll 476 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) → ([⟨(𝑎 +P 1P), 1P⟩] ~R +R [⟨((𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥) +P 1P), 1P⟩] ~R ) = ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥))
6864, 67eqtrd 2210 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) → [⟨((𝑎 +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) +P 1P), 1P⟩] ~R = ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥))
6968adantr 276 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) ∧ 𝑘N) → [⟨((𝑎 +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) +P 1P), 1P⟩] ~R = ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥))
7062, 69breq12d 4018 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) ∧ 𝑘N) → ([⟨(((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 1P), 1P⟩] ~R <R [⟨((𝑎 +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) +P 1P), 1P⟩] ~R ↔ (𝐹𝑘) <R ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥)))
7158, 70bitrd 188 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) ∧ 𝑘N) → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) ↔ (𝐹𝑘) <R ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥)))
7253adantr 276 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) ∧ 𝑘N) → 𝑎P)
7323adantr 276 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) ∧ 𝑘N) → (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥) ∈ P)
74 addclpr 7538 . . . . . . . . . . . . . 14 ((((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) ∈ P ∧ (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥) ∈ P) → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) ∈ P)
7551, 73, 74syl2anc 411 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) ∧ 𝑘N) → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) ∈ P)
76 prsrlt 7788 . . . . . . . . . . . . 13 ((𝑎P ∧ (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) ∈ P) → (𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) ↔ [⟨(𝑎 +P 1P), 1P⟩] ~R <R [⟨((((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) +P 1P), 1P⟩] ~R ))
7772, 75, 76syl2anc 411 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) ∧ 𝑘N) → (𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) ↔ [⟨(𝑎 +P 1P), 1P⟩] ~R <R [⟨((((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) +P 1P), 1P⟩] ~R ))
78 prsradd 7787 . . . . . . . . . . . . . 14 ((((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) ∈ P ∧ (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥) ∈ P) → [⟨((((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) +P 1P), 1P⟩] ~R = ([⟨(((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 1P), 1P⟩] ~R +R [⟨((𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥) +P 1P), 1P⟩] ~R ))
7951, 73, 78syl2anc 411 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) ∧ 𝑘N) → [⟨((((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) +P 1P), 1P⟩] ~R = ([⟨(((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 1P), 1P⟩] ~R +R [⟨((𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥) +P 1P), 1P⟩] ~R ))
8079breq2d 4017 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) ∧ 𝑘N) → ([⟨(𝑎 +P 1P), 1P⟩] ~R <R [⟨((((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) +P 1P), 1P⟩] ~R ↔ [⟨(𝑎 +P 1P), 1P⟩] ~R <R ([⟨(((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 1P), 1P⟩] ~R +R [⟨((𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥) +P 1P), 1P⟩] ~R )))
8165adantll 476 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) → [⟨((𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥) +P 1P), 1P⟩] ~R = 𝑥)
8281adantr 276 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) ∧ 𝑘N) → [⟨((𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥) +P 1P), 1P⟩] ~R = 𝑥)
8362, 82oveq12d 5895 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) ∧ 𝑘N) → ([⟨(((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 1P), 1P⟩] ~R +R [⟨((𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥) +P 1P), 1P⟩] ~R ) = ((𝐹𝑘) +R 𝑥))
8483breq2d 4017 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) ∧ 𝑘N) → ([⟨(𝑎 +P 1P), 1P⟩] ~R <R ([⟨(((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 1P), 1P⟩] ~R +R [⟨((𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥) +P 1P), 1P⟩] ~R ) ↔ [⟨(𝑎 +P 1P), 1P⟩] ~R <R ((𝐹𝑘) +R 𝑥)))
8577, 80, 843bitrd 214 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) ∧ 𝑘N) → (𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) ↔ [⟨(𝑎 +P 1P), 1P⟩] ~R <R ((𝐹𝑘) +R 𝑥)))
8671, 85anbi12d 473 . . . . . . . . . 10 (((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) ∧ 𝑘N) → ((((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥))) ↔ ((𝐹𝑘) <R ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥) ∧ [⟨(𝑎 +P 1P), 1P⟩] ~R <R ((𝐹𝑘) +R 𝑥))))
8786imbi2d 230 . . . . . . . . 9 (((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) ∧ 𝑘N) → ((𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)))) ↔ (𝑗 <N 𝑘 → ((𝐹𝑘) <R ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥) ∧ [⟨(𝑎 +P 1P), 1P⟩] ~R <R ((𝐹𝑘) +R 𝑥)))))
8848, 87ralbida 2471 . . . . . . . 8 ((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) → (∀𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)))) ↔ ∀𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥) ∧ [⟨(𝑎 +P 1P), 1P⟩] ~R <R ((𝐹𝑘) +R 𝑥)))))
8935, 88rexbid 2476 . . . . . . 7 ((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) → (∃𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P (𝑐P [⟨(𝑐 +P 1P), 1P⟩] ~R = 𝑥)))) ↔ ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥) ∧ [⟨(𝑎 +P 1P), 1P⟩] ~R <R ((𝐹𝑘) +R 𝑥)))))
9024, 89mpbid 147 . . . . . 6 ((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥) ∧ [⟨(𝑎 +P 1P), 1P⟩] ~R <R ((𝐹𝑘) +R 𝑥))))
91 breq2 4009 . . . . . . . . 9 (𝑘 = 𝑖 → (𝑗 <N 𝑘𝑗 <N 𝑖))
92 fveq2 5517 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
9392breq1d 4015 . . . . . . . . . 10 (𝑘 = 𝑖 → ((𝐹𝑘) <R ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥) ↔ (𝐹𝑖) <R ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥)))
9492oveq1d 5892 . . . . . . . . . . 11 (𝑘 = 𝑖 → ((𝐹𝑘) +R 𝑥) = ((𝐹𝑖) +R 𝑥))
9594breq2d 4017 . . . . . . . . . 10 (𝑘 = 𝑖 → ([⟨(𝑎 +P 1P), 1P⟩] ~R <R ((𝐹𝑘) +R 𝑥) ↔ [⟨(𝑎 +P 1P), 1P⟩] ~R <R ((𝐹𝑖) +R 𝑥)))
9693, 95anbi12d 473 . . . . . . . . 9 (𝑘 = 𝑖 → (((𝐹𝑘) <R ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥) ∧ [⟨(𝑎 +P 1P), 1P⟩] ~R <R ((𝐹𝑘) +R 𝑥)) ↔ ((𝐹𝑖) <R ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥) ∧ [⟨(𝑎 +P 1P), 1P⟩] ~R <R ((𝐹𝑖) +R 𝑥))))
9791, 96imbi12d 234 . . . . . . . 8 (𝑘 = 𝑖 → ((𝑗 <N 𝑘 → ((𝐹𝑘) <R ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥) ∧ [⟨(𝑎 +P 1P), 1P⟩] ~R <R ((𝐹𝑘) +R 𝑥))) ↔ (𝑗 <N 𝑖 → ((𝐹𝑖) <R ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥) ∧ [⟨(𝑎 +P 1P), 1P⟩] ~R <R ((𝐹𝑖) +R 𝑥)))))
9897cbvralv 2705 . . . . . . 7 (∀𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥) ∧ [⟨(𝑎 +P 1P), 1P⟩] ~R <R ((𝐹𝑘) +R 𝑥))) ↔ ∀𝑖N (𝑗 <N 𝑖 → ((𝐹𝑖) <R ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥) ∧ [⟨(𝑎 +P 1P), 1P⟩] ~R <R ((𝐹𝑖) +R 𝑥))))
9998rexbii 2484 . . . . . 6 (∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥) ∧ [⟨(𝑎 +P 1P), 1P⟩] ~R <R ((𝐹𝑘) +R 𝑥))) ↔ ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐹𝑖) <R ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥) ∧ [⟨(𝑎 +P 1P), 1P⟩] ~R <R ((𝐹𝑖) +R 𝑥))))
10090, 99sylib 122 . . . . 5 ((((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) ∧ 0R <R 𝑥) → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐹𝑖) <R ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥) ∧ [⟨(𝑎 +P 1P), 1P⟩] ~R <R ((𝐹𝑖) +R 𝑥))))
101100ex 115 . . . 4 (((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) ∧ 𝑥R) → (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐹𝑖) <R ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥) ∧ [⟨(𝑎 +P 1P), 1P⟩] ~R <R ((𝐹𝑖) +R 𝑥)))))
102101ralrimiva 2550 . . 3 ((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) → ∀𝑥R (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐹𝑖) <R ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥) ∧ [⟨(𝑎 +P 1P), 1P⟩] ~R <R ((𝐹𝑖) +R 𝑥)))))
103 oveq1 5884 . . . . . . . . . 10 (𝑦 = [⟨(𝑎 +P 1P), 1P⟩] ~R → (𝑦 +R 𝑥) = ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥))
104103breq2d 4017 . . . . . . . . 9 (𝑦 = [⟨(𝑎 +P 1P), 1P⟩] ~R → ((𝐹𝑖) <R (𝑦 +R 𝑥) ↔ (𝐹𝑖) <R ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥)))
105 breq1 4008 . . . . . . . . 9 (𝑦 = [⟨(𝑎 +P 1P), 1P⟩] ~R → (𝑦 <R ((𝐹𝑖) +R 𝑥) ↔ [⟨(𝑎 +P 1P), 1P⟩] ~R <R ((𝐹𝑖) +R 𝑥)))
106104, 105anbi12d 473 . . . . . . . 8 (𝑦 = [⟨(𝑎 +P 1P), 1P⟩] ~R → (((𝐹𝑖) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑖) +R 𝑥)) ↔ ((𝐹𝑖) <R ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥) ∧ [⟨(𝑎 +P 1P), 1P⟩] ~R <R ((𝐹𝑖) +R 𝑥))))
107106imbi2d 230 . . . . . . 7 (𝑦 = [⟨(𝑎 +P 1P), 1P⟩] ~R → ((𝑗 <N 𝑖 → ((𝐹𝑖) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑖) +R 𝑥))) ↔ (𝑗 <N 𝑖 → ((𝐹𝑖) <R ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥) ∧ [⟨(𝑎 +P 1P), 1P⟩] ~R <R ((𝐹𝑖) +R 𝑥)))))
108107rexralbidv 2503 . . . . . 6 (𝑦 = [⟨(𝑎 +P 1P), 1P⟩] ~R → (∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐹𝑖) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑖) +R 𝑥))) ↔ ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐹𝑖) <R ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥) ∧ [⟨(𝑎 +P 1P), 1P⟩] ~R <R ((𝐹𝑖) +R 𝑥)))))
109108imbi2d 230 . . . . 5 (𝑦 = [⟨(𝑎 +P 1P), 1P⟩] ~R → ((0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐹𝑖) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑖) +R 𝑥)))) ↔ (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐹𝑖) <R ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥) ∧ [⟨(𝑎 +P 1P), 1P⟩] ~R <R ((𝐹𝑖) +R 𝑥))))))
110109ralbidv 2477 . . . 4 (𝑦 = [⟨(𝑎 +P 1P), 1P⟩] ~R → (∀𝑥R (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐹𝑖) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑖) +R 𝑥)))) ↔ ∀𝑥R (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐹𝑖) <R ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥) ∧ [⟨(𝑎 +P 1P), 1P⟩] ~R <R ((𝐹𝑖) +R 𝑥))))))
111110rspcev 2843 . . 3 (([⟨(𝑎 +P 1P), 1P⟩] ~RR ∧ ∀𝑥R (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐹𝑖) <R ([⟨(𝑎 +P 1P), 1P⟩] ~R +R 𝑥) ∧ [⟨(𝑎 +P 1P), 1P⟩] ~R <R ((𝐹𝑖) +R 𝑥))))) → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐹𝑖) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑖) +R 𝑥)))))
11210, 102, 111syl2anc 411 . 2 ((𝜑 ∧ (𝑎P ∧ ∀𝑏P𝑗N𝑘N (𝑗 <N 𝑘 → (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘)<P (𝑎 +P 𝑏) ∧ 𝑎<P (((𝑧N ↦ (𝑤P (𝐹𝑧) = [⟨(𝑤 +P 1P), 1P⟩] ~R ))‘𝑘) +P 𝑏))))) → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐹𝑖) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑖) +R 𝑥)))))
1138, 112rexlimddv 2599 1 (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐹𝑖) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑖) +R 𝑥)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  {cab 2163  wral 2455  wrex 2456  ∃!wreu 2457  cop 3597   class class class wbr 4005  cmpt 4066  wf 5214  cfv 5218  crio 5832  (class class class)co 5877  1oc1o 6412  [cec 6535  Ncnpi 7273   <N clti 7276   ~Q ceq 7280  *Qcrq 7285   <Q cltq 7286  Pcnp 7292  1Pc1p 7293   +P cpp 7294  <P cltp 7296   ~R cer 7297  Rcnr 7298  0Rc0r 7299  1Rc1r 7300   +R cplr 7302   <R cltr 7304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-2o 6420  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354  df-enq0 7425  df-nq0 7426  df-0nq0 7427  df-plq0 7428  df-mq0 7429  df-inp 7467  df-i1p 7468  df-iplp 7469  df-iltp 7471  df-enr 7727  df-nr 7728  df-plr 7729  df-ltr 7731  df-0r 7732  df-1r 7733
This theorem is referenced by:  caucvgsrlemoffres  7801
  Copyright terms: Public domain W3C validator