Step | Hyp | Ref
| Expression |
1 | | bezoutlembi 11938 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
∃𝑑 ∈
ℕ0 (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
2 | | simprrr 530 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) |
3 | | nfv 1516 |
. . . . 5
⊢
Ⅎ𝑥(𝐴 ∈ ℤ ∧ 𝐵 ∈
ℤ) |
4 | | nfv 1516 |
. . . . . 6
⊢
Ⅎ𝑥 𝑑 ∈
ℕ0 |
5 | | nfv 1516 |
. . . . . . 7
⊢
Ⅎ𝑥∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) |
6 | | nfre1 2509 |
. . . . . . 7
⊢
Ⅎ𝑥∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) |
7 | 5, 6 | nfan 1553 |
. . . . . 6
⊢
Ⅎ𝑥(∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) |
8 | 4, 7 | nfan 1553 |
. . . . 5
⊢
Ⅎ𝑥(𝑑 ∈ ℕ0
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
9 | 3, 8 | nfan 1553 |
. . . 4
⊢
Ⅎ𝑥((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) |
10 | | nfv 1516 |
. . . . . 6
⊢
Ⅎ𝑦(𝐴 ∈ ℤ ∧ 𝐵 ∈
ℤ) |
11 | | nfv 1516 |
. . . . . . 7
⊢
Ⅎ𝑦 𝑑 ∈
ℕ0 |
12 | | nfv 1516 |
. . . . . . . 8
⊢
Ⅎ𝑦∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) |
13 | | nfcv 2308 |
. . . . . . . . 9
⊢
Ⅎ𝑦ℤ |
14 | | nfre1 2509 |
. . . . . . . . 9
⊢
Ⅎ𝑦∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) |
15 | 13, 14 | nfrexya 2507 |
. . . . . . . 8
⊢
Ⅎ𝑦∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) |
16 | 12, 15 | nfan 1553 |
. . . . . . 7
⊢
Ⅎ𝑦(∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) |
17 | 11, 16 | nfan 1553 |
. . . . . 6
⊢
Ⅎ𝑦(𝑑 ∈ ℕ0
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
18 | 10, 17 | nfan 1553 |
. . . . 5
⊢
Ⅎ𝑦((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) |
19 | | dfgcd3 11943 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) = (℩𝑤 ∈ ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑤 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) |
20 | 19 | adantr 274 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) → (𝐴 gcd 𝐵) = (℩𝑤 ∈ ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑤 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) |
21 | | simprrl 529 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) |
22 | | simprl 521 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) → 𝑑 ∈ ℕ0) |
23 | | simpll 519 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) → 𝐴 ∈ ℤ) |
24 | | simplr 520 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) → 𝐵 ∈ ℤ) |
25 | 23, 24, 22, 21 | bezoutlemeu 11940 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) → ∃!𝑤 ∈ ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑤 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) |
26 | | breq2 3986 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑑 → (𝑧 ∥ 𝑤 ↔ 𝑧 ∥ 𝑑)) |
27 | 26 | bibi1d 232 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑑 → ((𝑧 ∥ 𝑤 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) |
28 | 27 | ralbidv 2466 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑑 → (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑤 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) |
29 | 28 | riota2 5820 |
. . . . . . . . 9
⊢ ((𝑑 ∈ ℕ0
∧ ∃!𝑤 ∈
ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑤 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) → (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ (℩𝑤 ∈ ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑤 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) = 𝑑)) |
30 | 22, 25, 29 | syl2anc 409 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) → (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ (℩𝑤 ∈ ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑤 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) = 𝑑)) |
31 | 21, 30 | mpbid 146 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) → (℩𝑤 ∈ ℕ0
∀𝑧 ∈ ℤ
(𝑧 ∥ 𝑤 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) = 𝑑) |
32 | 20, 31 | eqtrd 2198 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) → (𝐴 gcd 𝐵) = 𝑑) |
33 | 32 | eqeq1d 2174 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
34 | 18, 33 | rexbid 2465 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) → (∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
35 | 9, 34 | rexbid 2465 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
36 | 2, 35 | mpbird 166 |
. 2
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) |
37 | 1, 36 | rexlimddv 2588 |
1
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
∃𝑥 ∈ ℤ
∃𝑦 ∈ ℤ
(𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) |