ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onss GIF version

Theorem onss 4549
Description: An ordinal number is a subset of the class of ordinal numbers. (Contributed by NM, 5-Jun-1994.)
Assertion
Ref Expression
onss (𝐴 ∈ On → 𝐴 ⊆ On)

Proof of Theorem onss
StepHypRef Expression
1 eloni 4430 . 2 (𝐴 ∈ On → Ord 𝐴)
2 ordsson 4548 . 2 (Ord 𝐴𝐴 ⊆ On)
31, 2syl 14 1 (𝐴 ∈ On → 𝐴 ⊆ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  wss 3170  Ord word 4417  Oncon0 4418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-in 3176  df-ss 3183  df-uni 3857  df-tr 4151  df-iord 4421  df-on 4423
This theorem is referenced by:  onuni  4550  onssi  4571  tfrexlem  6433  tfri3  6466  rdgivallem  6480  bj-omssonALT  16037
  Copyright terms: Public domain W3C validator