ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onss GIF version

Theorem onss 4539
Description: An ordinal number is a subset of the class of ordinal numbers. (Contributed by NM, 5-Jun-1994.)
Assertion
Ref Expression
onss (𝐴 ∈ On → 𝐴 ⊆ On)

Proof of Theorem onss
StepHypRef Expression
1 eloni 4420 . 2 (𝐴 ∈ On → Ord 𝐴)
2 ordsson 4538 . 2 (Ord 𝐴𝐴 ⊆ On)
31, 2syl 14 1 (𝐴 ∈ On → 𝐴 ⊆ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2175  wss 3165  Ord word 4407  Oncon0 4408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-in 3171  df-ss 3178  df-uni 3850  df-tr 4142  df-iord 4411  df-on 4413
This theorem is referenced by:  onuni  4540  onssi  4561  tfrexlem  6410  tfri3  6443  rdgivallem  6457  bj-omssonALT  15763
  Copyright terms: Public domain W3C validator