Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onss | GIF version |
Description: An ordinal number is a subset of the class of ordinal numbers. (Contributed by NM, 5-Jun-1994.) |
Ref | Expression |
---|---|
onss | ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 4358 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ordsson 4474 | . 2 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ⊆ wss 3121 Ord word 4345 Oncon0 4346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-in 3127 df-ss 3134 df-uni 3795 df-tr 4086 df-iord 4349 df-on 4351 |
This theorem is referenced by: onuni 4476 onssi 4497 tfrexlem 6310 tfri3 6343 rdgivallem 6357 bj-omssonALT 13958 |
Copyright terms: Public domain | W3C validator |