![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmsnsnsng | GIF version |
Description: The domain of the singleton of the singleton of a singleton. (Contributed by Jim Kingdon, 16-Dec-2018.) |
Ref | Expression |
---|---|
dmsnsnsng | ⊢ (𝐴 ∈ V → dom {{{𝐴}}} = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2622 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
2 | 1 | opid 3640 | . . . . . 6 ⊢ 〈𝑥, 𝑥〉 = {{𝑥}} |
3 | sneq 3457 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
4 | 3 | sneqd 3459 | . . . . . 6 ⊢ (𝑥 = 𝐴 → {{𝑥}} = {{𝐴}}) |
5 | 2, 4 | syl5eq 2132 | . . . . 5 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑥〉 = {{𝐴}}) |
6 | 5 | sneqd 3459 | . . . 4 ⊢ (𝑥 = 𝐴 → {〈𝑥, 𝑥〉} = {{{𝐴}}}) |
7 | 6 | dmeqd 4638 | . . 3 ⊢ (𝑥 = 𝐴 → dom {〈𝑥, 𝑥〉} = dom {{{𝐴}}}) |
8 | 7, 3 | eqeq12d 2102 | . 2 ⊢ (𝑥 = 𝐴 → (dom {〈𝑥, 𝑥〉} = {𝑥} ↔ dom {{{𝐴}}} = {𝐴})) |
9 | 1 | dmsnop 4904 | . 2 ⊢ dom {〈𝑥, 𝑥〉} = {𝑥} |
10 | 8, 9 | vtoclg 2679 | 1 ⊢ (𝐴 ∈ V → dom {{{𝐴}}} = {𝐴}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1289 ∈ wcel 1438 Vcvv 2619 {csn 3446 〈cop 3449 dom cdm 4438 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-br 3846 df-dm 4448 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |