| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmsnsnsng | GIF version | ||
| Description: The domain of the singleton of the singleton of a singleton. (Contributed by Jim Kingdon, 16-Dec-2018.) |
| Ref | Expression |
|---|---|
| dmsnsnsng | ⊢ (𝐴 ∈ V → dom {{{𝐴}}} = {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2776 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 2 | 1 | opid 3843 | . . . . . 6 ⊢ 〈𝑥, 𝑥〉 = {{𝑥}} |
| 3 | sneq 3649 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 4 | 3 | sneqd 3651 | . . . . . 6 ⊢ (𝑥 = 𝐴 → {{𝑥}} = {{𝐴}}) |
| 5 | 2, 4 | eqtrid 2251 | . . . . 5 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑥〉 = {{𝐴}}) |
| 6 | 5 | sneqd 3651 | . . . 4 ⊢ (𝑥 = 𝐴 → {〈𝑥, 𝑥〉} = {{{𝐴}}}) |
| 7 | 6 | dmeqd 4889 | . . 3 ⊢ (𝑥 = 𝐴 → dom {〈𝑥, 𝑥〉} = dom {{{𝐴}}}) |
| 8 | 7, 3 | eqeq12d 2221 | . 2 ⊢ (𝑥 = 𝐴 → (dom {〈𝑥, 𝑥〉} = {𝑥} ↔ dom {{{𝐴}}} = {𝐴})) |
| 9 | 1 | dmsnop 5165 | . 2 ⊢ dom {〈𝑥, 𝑥〉} = {𝑥} |
| 10 | 8, 9 | vtoclg 2835 | 1 ⊢ (𝐴 ∈ V → dom {{{𝐴}}} = {𝐴}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 {csn 3638 〈cop 3641 dom cdm 4683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-dm 4693 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |