![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmsnsnsng | GIF version |
Description: The domain of the singleton of the singleton of a singleton. (Contributed by Jim Kingdon, 16-Dec-2018.) |
Ref | Expression |
---|---|
dmsnsnsng | ⊢ (𝐴 ∈ V → dom {{{𝐴}}} = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2752 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
2 | 1 | opid 3808 | . . . . . 6 ⊢ 〈𝑥, 𝑥〉 = {{𝑥}} |
3 | sneq 3615 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
4 | 3 | sneqd 3617 | . . . . . 6 ⊢ (𝑥 = 𝐴 → {{𝑥}} = {{𝐴}}) |
5 | 2, 4 | eqtrid 2232 | . . . . 5 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑥〉 = {{𝐴}}) |
6 | 5 | sneqd 3617 | . . . 4 ⊢ (𝑥 = 𝐴 → {〈𝑥, 𝑥〉} = {{{𝐴}}}) |
7 | 6 | dmeqd 4841 | . . 3 ⊢ (𝑥 = 𝐴 → dom {〈𝑥, 𝑥〉} = dom {{{𝐴}}}) |
8 | 7, 3 | eqeq12d 2202 | . 2 ⊢ (𝑥 = 𝐴 → (dom {〈𝑥, 𝑥〉} = {𝑥} ↔ dom {{{𝐴}}} = {𝐴})) |
9 | 1 | dmsnop 5114 | . 2 ⊢ dom {〈𝑥, 𝑥〉} = {𝑥} |
10 | 8, 9 | vtoclg 2809 | 1 ⊢ (𝐴 ∈ V → dom {{{𝐴}}} = {𝐴}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1363 ∈ wcel 2158 Vcvv 2749 {csn 3604 〈cop 3607 dom cdm 4638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-v 2751 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-br 4016 df-dm 4648 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |