![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmsnsnsng | GIF version |
Description: The domain of the singleton of the singleton of a singleton. (Contributed by Jim Kingdon, 16-Dec-2018.) |
Ref | Expression |
---|---|
dmsnsnsng | ⊢ (𝐴 ∈ V → dom {{{𝐴}}} = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2742 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
2 | 1 | opid 3798 | . . . . . 6 ⊢ ⟨𝑥, 𝑥⟩ = {{𝑥}} |
3 | sneq 3605 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
4 | 3 | sneqd 3607 | . . . . . 6 ⊢ (𝑥 = 𝐴 → {{𝑥}} = {{𝐴}}) |
5 | 2, 4 | eqtrid 2222 | . . . . 5 ⊢ (𝑥 = 𝐴 → ⟨𝑥, 𝑥⟩ = {{𝐴}}) |
6 | 5 | sneqd 3607 | . . . 4 ⊢ (𝑥 = 𝐴 → {⟨𝑥, 𝑥⟩} = {{{𝐴}}}) |
7 | 6 | dmeqd 4831 | . . 3 ⊢ (𝑥 = 𝐴 → dom {⟨𝑥, 𝑥⟩} = dom {{{𝐴}}}) |
8 | 7, 3 | eqeq12d 2192 | . 2 ⊢ (𝑥 = 𝐴 → (dom {⟨𝑥, 𝑥⟩} = {𝑥} ↔ dom {{{𝐴}}} = {𝐴})) |
9 | 1 | dmsnop 5104 | . 2 ⊢ dom {⟨𝑥, 𝑥⟩} = {𝑥} |
10 | 8, 9 | vtoclg 2799 | 1 ⊢ (𝐴 ∈ V → dom {{{𝐴}}} = {𝐴}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 Vcvv 2739 {csn 3594 ⟨cop 3597 dom cdm 4628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-dm 4638 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |