ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsnsnsng GIF version

Theorem dmsnsnsng 5118
Description: The domain of the singleton of the singleton of a singleton. (Contributed by Jim Kingdon, 16-Dec-2018.)
Assertion
Ref Expression
dmsnsnsng (𝐴 ∈ V → dom {{{𝐴}}} = {𝐴})

Proof of Theorem dmsnsnsng
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 2752 . . . . . . 7 𝑥 ∈ V
21opid 3808 . . . . . 6 𝑥, 𝑥⟩ = {{𝑥}}
3 sneq 3615 . . . . . . 7 (𝑥 = 𝐴 → {𝑥} = {𝐴})
43sneqd 3617 . . . . . 6 (𝑥 = 𝐴 → {{𝑥}} = {{𝐴}})
52, 4eqtrid 2232 . . . . 5 (𝑥 = 𝐴 → ⟨𝑥, 𝑥⟩ = {{𝐴}})
65sneqd 3617 . . . 4 (𝑥 = 𝐴 → {⟨𝑥, 𝑥⟩} = {{{𝐴}}})
76dmeqd 4841 . . 3 (𝑥 = 𝐴 → dom {⟨𝑥, 𝑥⟩} = dom {{{𝐴}}})
87, 3eqeq12d 2202 . 2 (𝑥 = 𝐴 → (dom {⟨𝑥, 𝑥⟩} = {𝑥} ↔ dom {{{𝐴}}} = {𝐴}))
91dmsnop 5114 . 2 dom {⟨𝑥, 𝑥⟩} = {𝑥}
108, 9vtoclg 2809 1 (𝐴 ∈ V → dom {{{𝐴}}} = {𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1363  wcel 2158  Vcvv 2749  {csn 3604  cop 3607  dom cdm 4638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-br 4016  df-dm 4648
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator