ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsnsnsng GIF version

Theorem dmsnsnsng 5081
Description: The domain of the singleton of the singleton of a singleton. (Contributed by Jim Kingdon, 16-Dec-2018.)
Assertion
Ref Expression
dmsnsnsng (𝐴 ∈ V → dom {{{𝐴}}} = {𝐴})

Proof of Theorem dmsnsnsng
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 2729 . . . . . . 7 𝑥 ∈ V
21opid 3776 . . . . . 6 𝑥, 𝑥⟩ = {{𝑥}}
3 sneq 3587 . . . . . . 7 (𝑥 = 𝐴 → {𝑥} = {𝐴})
43sneqd 3589 . . . . . 6 (𝑥 = 𝐴 → {{𝑥}} = {{𝐴}})
52, 4syl5eq 2211 . . . . 5 (𝑥 = 𝐴 → ⟨𝑥, 𝑥⟩ = {{𝐴}})
65sneqd 3589 . . . 4 (𝑥 = 𝐴 → {⟨𝑥, 𝑥⟩} = {{{𝐴}}})
76dmeqd 4806 . . 3 (𝑥 = 𝐴 → dom {⟨𝑥, 𝑥⟩} = dom {{{𝐴}}})
87, 3eqeq12d 2180 . 2 (𝑥 = 𝐴 → (dom {⟨𝑥, 𝑥⟩} = {𝑥} ↔ dom {{{𝐴}}} = {𝐴}))
91dmsnop 5077 . 2 dom {⟨𝑥, 𝑥⟩} = {𝑥}
108, 9vtoclg 2786 1 (𝐴 ∈ V → dom {{{𝐴}}} = {𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  Vcvv 2726  {csn 3576  cop 3579  dom cdm 4604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-dm 4614
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator