ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsnsnsng GIF version

Theorem dmsnsnsng 5144
Description: The domain of the singleton of the singleton of a singleton. (Contributed by Jim Kingdon, 16-Dec-2018.)
Assertion
Ref Expression
dmsnsnsng (𝐴 ∈ V → dom {{{𝐴}}} = {𝐴})

Proof of Theorem dmsnsnsng
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 2763 . . . . . . 7 𝑥 ∈ V
21opid 3823 . . . . . 6 𝑥, 𝑥⟩ = {{𝑥}}
3 sneq 3630 . . . . . . 7 (𝑥 = 𝐴 → {𝑥} = {𝐴})
43sneqd 3632 . . . . . 6 (𝑥 = 𝐴 → {{𝑥}} = {{𝐴}})
52, 4eqtrid 2238 . . . . 5 (𝑥 = 𝐴 → ⟨𝑥, 𝑥⟩ = {{𝐴}})
65sneqd 3632 . . . 4 (𝑥 = 𝐴 → {⟨𝑥, 𝑥⟩} = {{{𝐴}}})
76dmeqd 4865 . . 3 (𝑥 = 𝐴 → dom {⟨𝑥, 𝑥⟩} = dom {{{𝐴}}})
87, 3eqeq12d 2208 . 2 (𝑥 = 𝐴 → (dom {⟨𝑥, 𝑥⟩} = {𝑥} ↔ dom {{{𝐴}}} = {𝐴}))
91dmsnop 5140 . 2 dom {⟨𝑥, 𝑥⟩} = {𝑥}
108, 9vtoclg 2821 1 (𝐴 ∈ V → dom {{{𝐴}}} = {𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  Vcvv 2760  {csn 3619  cop 3622  dom cdm 4660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-dm 4670
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator