ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prssi GIF version

Theorem prssi 3780
Description: A pair of elements of a class is a subset of the class. (Contributed by NM, 16-Jan-2015.)
Assertion
Ref Expression
prssi ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ⊆ 𝐶)

Proof of Theorem prssi
StepHypRef Expression
1 prssg 3779 . 2 ((𝐴𝐶𝐵𝐶) → ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶))
21ibi 176 1 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ⊆ 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167  wss 3157  {cpr 3623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629
This theorem is referenced by:  prssd  3781  tpssi  3789  prelpwi  4247  onun2  4526  onintexmid  4609  nnregexmid  4657  en2eqpr  6968  m1expcl2  10653  m1expcl  10654  minmax  11395  xrminmax  11430  1idssfct  12283  subrngin  13769  subrgin  13800  lssincl  13941  unopn  14241  bdop  15521  012of  15640  isomninnlem  15674  trilpolemisumle  15682  trilpolemeq1  15684  trilpolemlt1  15685  iswomninnlem  15693  iswomni0  15695  ismkvnnlem  15696  nconstwlpolemgt0  15708
  Copyright terms: Public domain W3C validator