ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prssi GIF version

Theorem prssi 3781
Description: A pair of elements of a class is a subset of the class. (Contributed by NM, 16-Jan-2015.)
Assertion
Ref Expression
prssi ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ⊆ 𝐶)

Proof of Theorem prssi
StepHypRef Expression
1 prssg 3780 . 2 ((𝐴𝐶𝐵𝐶) → ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶))
21ibi 176 1 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ⊆ 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167  wss 3157  {cpr 3624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630
This theorem is referenced by:  prssd  3782  tpssi  3790  prelpwi  4248  onun2  4527  onintexmid  4610  nnregexmid  4658  en2eqpr  6977  m1expcl2  10672  m1expcl  10673  minmax  11414  xrminmax  11449  1idssfct  12310  subrngin  13847  subrgin  13878  lssincl  14019  unopn  14349  bdop  15629  012of  15748  isomninnlem  15787  trilpolemisumle  15795  trilpolemeq1  15797  trilpolemlt1  15798  iswomninnlem  15806  iswomni0  15808  ismkvnnlem  15809  nconstwlpolemgt0  15821
  Copyright terms: Public domain W3C validator