| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prssi | GIF version | ||
| Description: A pair of elements of a class is a subset of the class. (Contributed by NM, 16-Jan-2015.) |
| Ref | Expression |
|---|---|
| prssi | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prssg 3790 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) | |
| 2 | 1 | ibi 176 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2176 ⊆ wss 3166 {cpr 3634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 |
| This theorem is referenced by: prssd 3792 tpssi 3800 prelpwi 4258 onun2 4538 onintexmid 4621 nnregexmid 4669 rex2dom 6910 en2eqpr 7004 m1expcl2 10706 m1expcl 10707 minmax 11541 xrminmax 11576 1idssfct 12437 subrngin 13975 subrgin 14006 lssincl 14147 unopn 14477 bdop 15811 012of 15930 isomninnlem 15969 trilpolemisumle 15977 trilpolemeq1 15979 trilpolemlt1 15980 iswomninnlem 15988 iswomni0 15990 ismkvnnlem 15991 nconstwlpolemgt0 16003 |
| Copyright terms: Public domain | W3C validator |