| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prssi | GIF version | ||
| Description: A pair of elements of a class is a subset of the class. (Contributed by NM, 16-Jan-2015.) |
| Ref | Expression |
|---|---|
| prssi | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prssg 3779 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) | |
| 2 | 1 | ibi 176 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ⊆ wss 3157 {cpr 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 |
| This theorem is referenced by: prssd 3781 tpssi 3789 prelpwi 4247 onun2 4526 onintexmid 4609 nnregexmid 4657 en2eqpr 6968 m1expcl2 10653 m1expcl 10654 minmax 11395 xrminmax 11430 1idssfct 12283 subrngin 13769 subrgin 13800 lssincl 13941 unopn 14241 bdop 15521 012of 15640 isomninnlem 15674 trilpolemisumle 15682 trilpolemeq1 15684 trilpolemlt1 15685 iswomninnlem 15693 iswomni0 15695 ismkvnnlem 15696 nconstwlpolemgt0 15708 |
| Copyright terms: Public domain | W3C validator |