| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prssi | GIF version | ||
| Description: A pair of elements of a class is a subset of the class. (Contributed by NM, 16-Jan-2015.) |
| Ref | Expression |
|---|---|
| prssi | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prssg 3824 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) | |
| 2 | 1 | ibi 176 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 ⊆ wss 3197 {cpr 3667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: prssd 3826 tpssi 3836 prelpwi 4299 onun2 4581 onintexmid 4664 nnregexmid 4712 rex2dom 6969 en2eqpr 7065 m1expcl2 10778 m1expcl 10779 minmax 11736 xrminmax 11771 1idssfct 12632 subrngin 14171 subrgin 14202 lssincl 14343 unopn 14673 umgrbien 15904 bdop 16196 012of 16316 isomninnlem 16357 trilpolemisumle 16365 trilpolemeq1 16367 trilpolemlt1 16368 iswomninnlem 16376 iswomni0 16378 ismkvnnlem 16379 nconstwlpolemgt0 16391 |
| Copyright terms: Public domain | W3C validator |