| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prssi | GIF version | ||
| Description: A pair of elements of a class is a subset of the class. (Contributed by NM, 16-Jan-2015.) |
| Ref | Expression |
|---|---|
| prssi | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prssg 3780 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) | |
| 2 | 1 | ibi 176 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ⊆ wss 3157 {cpr 3624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 |
| This theorem is referenced by: prssd 3782 tpssi 3790 prelpwi 4248 onun2 4527 onintexmid 4610 nnregexmid 4658 en2eqpr 6977 m1expcl2 10672 m1expcl 10673 minmax 11414 xrminmax 11449 1idssfct 12310 subrngin 13847 subrgin 13878 lssincl 14019 unopn 14349 bdop 15629 012of 15748 isomninnlem 15787 trilpolemisumle 15795 trilpolemeq1 15797 trilpolemlt1 15798 iswomninnlem 15806 iswomni0 15808 ismkvnnlem 15809 nconstwlpolemgt0 15821 |
| Copyright terms: Public domain | W3C validator |