| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prssi | GIF version | ||
| Description: A pair of elements of a class is a subset of the class. (Contributed by NM, 16-Jan-2015.) |
| Ref | Expression |
|---|---|
| prssi | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prssg 3801 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) | |
| 2 | 1 | ibi 176 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2178 ⊆ wss 3174 {cpr 3644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 |
| This theorem is referenced by: prssd 3803 tpssi 3813 prelpwi 4276 onun2 4556 onintexmid 4639 nnregexmid 4687 rex2dom 6934 en2eqpr 7030 m1expcl2 10743 m1expcl 10744 minmax 11656 xrminmax 11691 1idssfct 12552 subrngin 14090 subrgin 14121 lssincl 14262 unopn 14592 umgrbien 15821 bdop 16010 012of 16130 isomninnlem 16171 trilpolemisumle 16179 trilpolemeq1 16181 trilpolemlt1 16182 iswomninnlem 16190 iswomni0 16192 ismkvnnlem 16193 nconstwlpolemgt0 16205 |
| Copyright terms: Public domain | W3C validator |