ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prssi GIF version

Theorem prssi 3777
Description: A pair of elements of a class is a subset of the class. (Contributed by NM, 16-Jan-2015.)
Assertion
Ref Expression
prssi ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ⊆ 𝐶)

Proof of Theorem prssi
StepHypRef Expression
1 prssg 3776 . 2 ((𝐴𝐶𝐵𝐶) → ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶))
21ibi 176 1 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ⊆ 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2164  wss 3154  {cpr 3620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626
This theorem is referenced by:  prssd  3778  tpssi  3786  prelpwi  4244  onun2  4523  onintexmid  4606  nnregexmid  4654  en2eqpr  6965  m1expcl2  10635  m1expcl  10636  minmax  11376  xrminmax  11411  1idssfct  12256  subrngin  13712  subrgin  13743  lssincl  13884  unopn  14184  bdop  15437  012of  15556  isomninnlem  15590  trilpolemisumle  15598  trilpolemeq1  15600  trilpolemlt1  15601  iswomninnlem  15609  iswomni0  15611  ismkvnnlem  15612  nconstwlpolemgt0  15624
  Copyright terms: Public domain W3C validator