ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prssi GIF version

Theorem prssi 3752
Description: A pair of elements of a class is a subset of the class. (Contributed by NM, 16-Jan-2015.)
Assertion
Ref Expression
prssi ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ⊆ 𝐶)

Proof of Theorem prssi
StepHypRef Expression
1 prssg 3751 . 2 ((𝐴𝐶𝐵𝐶) → ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶))
21ibi 176 1 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ⊆ 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2148  wss 3131  {cpr 3595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-pr 3601
This theorem is referenced by:  prssd  3753  tpssi  3761  prelpwi  4216  onun2  4491  onintexmid  4574  nnregexmid  4622  en2eqpr  6909  m1expcl2  10544  m1expcl  10545  minmax  11240  xrminmax  11275  1idssfct  12117  subrgin  13370  lssincl  13477  unopn  13590  bdop  14712  012of  14830  isomninnlem  14863  trilpolemisumle  14871  trilpolemeq1  14873  trilpolemlt1  14874  iswomninnlem  14882  iswomni0  14884  ismkvnnlem  14885  nconstwlpolemgt0  14897
  Copyright terms: Public domain W3C validator