ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrminadd GIF version

Theorem xrminadd 11216
Description: Distributing addition over minimum. (Contributed by Jim Kingdon, 10-May-2023.)
Assertion
Ref Expression
xrminadd ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → inf({(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}, ℝ*, < ) = (𝐴 +𝑒 inf({𝐵, 𝐶}, ℝ*, < )))

Proof of Theorem xrminadd
StepHypRef Expression
1 simp1 987 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*)
21xnegcld 9791 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒𝐴 ∈ ℝ*)
3 simp2 988 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ∈ ℝ*)
43xnegcld 9791 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒𝐵 ∈ ℝ*)
5 simp3 989 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐶 ∈ ℝ*)
65xnegcld 9791 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒𝐶 ∈ ℝ*)
7 xrmaxcl 11193 . . . 4 ((-𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐶 ∈ ℝ*) → sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ∈ ℝ*)
84, 6, 7syl2anc 409 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ∈ ℝ*)
9 xnegdi 9804 . . 3 ((-𝑒𝐴 ∈ ℝ* ∧ sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ∈ ℝ*) → -𝑒(-𝑒𝐴 +𝑒 sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < )) = (-𝑒-𝑒𝐴 +𝑒 -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < )))
102, 8, 9syl2anc 409 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒(-𝑒𝐴 +𝑒 sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < )) = (-𝑒-𝑒𝐴 +𝑒 -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < )))
111, 3xaddcld 9820 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
121, 5xaddcld 9820 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
13 xrminmax 11206 . . . 4 (((𝐴 +𝑒 𝐵) ∈ ℝ* ∧ (𝐴 +𝑒 𝐶) ∈ ℝ*) → inf({(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}, ℝ*, < ) = -𝑒sup({-𝑒(𝐴 +𝑒 𝐵), -𝑒(𝐴 +𝑒 𝐶)}, ℝ*, < ))
1411, 12, 13syl2anc 409 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → inf({(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}, ℝ*, < ) = -𝑒sup({-𝑒(𝐴 +𝑒 𝐵), -𝑒(𝐴 +𝑒 𝐶)}, ℝ*, < ))
15 xnegdi 9804 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 𝐵) = (-𝑒𝐴 +𝑒 -𝑒𝐵))
161, 3, 15syl2anc 409 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒(𝐴 +𝑒 𝐵) = (-𝑒𝐴 +𝑒 -𝑒𝐵))
17 xnegdi 9804 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒(𝐴 +𝑒 𝐶) = (-𝑒𝐴 +𝑒 -𝑒𝐶))
181, 5, 17syl2anc 409 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒(𝐴 +𝑒 𝐶) = (-𝑒𝐴 +𝑒 -𝑒𝐶))
1916, 18preq12d 3661 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → {-𝑒(𝐴 +𝑒 𝐵), -𝑒(𝐴 +𝑒 𝐶)} = {(-𝑒𝐴 +𝑒 -𝑒𝐵), (-𝑒𝐴 +𝑒 -𝑒𝐶)})
2019supeq1d 6952 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({-𝑒(𝐴 +𝑒 𝐵), -𝑒(𝐴 +𝑒 𝐶)}, ℝ*, < ) = sup({(-𝑒𝐴 +𝑒 -𝑒𝐵), (-𝑒𝐴 +𝑒 -𝑒𝐶)}, ℝ*, < ))
21 xnegeq 9763 . . . 4 (sup({-𝑒(𝐴 +𝑒 𝐵), -𝑒(𝐴 +𝑒 𝐶)}, ℝ*, < ) = sup({(-𝑒𝐴 +𝑒 -𝑒𝐵), (-𝑒𝐴 +𝑒 -𝑒𝐶)}, ℝ*, < ) → -𝑒sup({-𝑒(𝐴 +𝑒 𝐵), -𝑒(𝐴 +𝑒 𝐶)}, ℝ*, < ) = -𝑒sup({(-𝑒𝐴 +𝑒 -𝑒𝐵), (-𝑒𝐴 +𝑒 -𝑒𝐶)}, ℝ*, < ))
2220, 21syl 14 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒sup({-𝑒(𝐴 +𝑒 𝐵), -𝑒(𝐴 +𝑒 𝐶)}, ℝ*, < ) = -𝑒sup({(-𝑒𝐴 +𝑒 -𝑒𝐵), (-𝑒𝐴 +𝑒 -𝑒𝐶)}, ℝ*, < ))
23 xrmaxadd 11202 . . . . 5 ((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐶 ∈ ℝ*) → sup({(-𝑒𝐴 +𝑒 -𝑒𝐵), (-𝑒𝐴 +𝑒 -𝑒𝐶)}, ℝ*, < ) = (-𝑒𝐴 +𝑒 sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < )))
242, 4, 6, 23syl3anc 1228 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({(-𝑒𝐴 +𝑒 -𝑒𝐵), (-𝑒𝐴 +𝑒 -𝑒𝐶)}, ℝ*, < ) = (-𝑒𝐴 +𝑒 sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < )))
25 xnegeq 9763 . . . 4 (sup({(-𝑒𝐴 +𝑒 -𝑒𝐵), (-𝑒𝐴 +𝑒 -𝑒𝐶)}, ℝ*, < ) = (-𝑒𝐴 +𝑒 sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < )) → -𝑒sup({(-𝑒𝐴 +𝑒 -𝑒𝐵), (-𝑒𝐴 +𝑒 -𝑒𝐶)}, ℝ*, < ) = -𝑒(-𝑒𝐴 +𝑒 sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < )))
2624, 25syl 14 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒sup({(-𝑒𝐴 +𝑒 -𝑒𝐵), (-𝑒𝐴 +𝑒 -𝑒𝐶)}, ℝ*, < ) = -𝑒(-𝑒𝐴 +𝑒 sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < )))
2714, 22, 263eqtrd 2202 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → inf({(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}, ℝ*, < ) = -𝑒(-𝑒𝐴 +𝑒 sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < )))
28 xnegneg 9769 . . . . 5 (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴)
2928eqcomd 2171 . . . 4 (𝐴 ∈ ℝ*𝐴 = -𝑒-𝑒𝐴)
301, 29syl 14 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 = -𝑒-𝑒𝐴)
31 xrminmax 11206 . . . 4 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → inf({𝐵, 𝐶}, ℝ*, < ) = -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ))
323, 5, 31syl2anc 409 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → inf({𝐵, 𝐶}, ℝ*, < ) = -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ))
3330, 32oveq12d 5860 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 inf({𝐵, 𝐶}, ℝ*, < )) = (-𝑒-𝑒𝐴 +𝑒 -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < )))
3410, 27, 333eqtr4d 2208 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → inf({(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}, ℝ*, < ) = (𝐴 +𝑒 inf({𝐵, 𝐶}, ℝ*, < )))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 968   = wceq 1343  wcel 2136  {cpr 3577  (class class class)co 5842  supcsup 6947  infcinf 6948  *cxr 7932   < clt 7933  -𝑒cxne 9705   +𝑒 cxad 9706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-xneg 9708  df-xadd 9709  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator