| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrminrecl | GIF version | ||
| Description: The minimum of two real numbers is the same when taken as extended reals or as reals. (Contributed by Jim Kingdon, 18-May-2023.) |
| Ref | Expression |
|---|---|
| xrminrecl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ*, < ) = inf({𝐴, 𝐵}, ℝ, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexneg 9951 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) | |
| 2 | 1 | adantr 276 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝑒𝐴 = -𝐴) |
| 3 | rexneg 9951 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → -𝑒𝐵 = -𝐵) | |
| 4 | 3 | adantl 277 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝑒𝐵 = -𝐵) |
| 5 | 2, 4 | preq12d 3717 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {-𝑒𝐴, -𝑒𝐵} = {-𝐴, -𝐵}) |
| 6 | 5 | supeq1d 7088 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = sup({-𝐴, -𝐵}, ℝ*, < )) |
| 7 | renegcl 8332 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
| 8 | renegcl 8332 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → -𝐵 ∈ ℝ) | |
| 9 | xrmaxrecl 11508 | . . . . . 6 ⊢ ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ*, < ) = sup({-𝐴, -𝐵}, ℝ, < )) | |
| 10 | 7, 8, 9 | syl2an 289 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ*, < ) = sup({-𝐴, -𝐵}, ℝ, < )) |
| 11 | 6, 10 | eqtrd 2237 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = sup({-𝐴, -𝐵}, ℝ, < )) |
| 12 | xnegeq 9948 | . . . 4 ⊢ (sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = sup({-𝐴, -𝐵}, ℝ, < ) → -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = -𝑒sup({-𝐴, -𝐵}, ℝ, < )) | |
| 13 | 11, 12 | syl 14 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = -𝑒sup({-𝐴, -𝐵}, ℝ, < )) |
| 14 | maxcl 11463 | . . . . 5 ⊢ ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ) | |
| 15 | 7, 8, 14 | syl2an 289 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ) |
| 16 | rexneg 9951 | . . . 4 ⊢ (sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ → -𝑒sup({-𝐴, -𝐵}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < )) | |
| 17 | 15, 16 | syl 14 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝑒sup({-𝐴, -𝐵}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < )) |
| 18 | 13, 17 | eqtrd 2237 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = -sup({-𝐴, -𝐵}, ℝ, < )) |
| 19 | rexr 8117 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 20 | rexr 8117 | . . 3 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 21 | xrminmax 11518 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) = -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )) | |
| 22 | 19, 20, 21 | syl2an 289 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ*, < ) = -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )) |
| 23 | minmax 11483 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < )) | |
| 24 | 18, 22, 23 | 3eqtr4d 2247 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ*, < ) = inf({𝐴, 𝐵}, ℝ, < )) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 {cpr 3633 supcsup 7083 infcinf 7084 ℝcr 7923 ℝ*cxr 8105 < clt 8106 -cneg 8243 -𝑒cxne 9890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-sup 7085 df-inf 7086 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-rp 9775 df-xneg 9893 df-seqfrec 10591 df-exp 10682 df-cj 11095 df-re 11096 df-im 11097 df-rsqrt 11251 df-abs 11252 |
| This theorem is referenced by: xrbdtri 11529 qtopbas 14936 |
| Copyright terms: Public domain | W3C validator |