ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrminrecl GIF version

Theorem xrminrecl 11584
Description: The minimum of two real numbers is the same when taken as extended reals or as reals. (Contributed by Jim Kingdon, 18-May-2023.)
Assertion
Ref Expression
xrminrecl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ*, < ) = inf({𝐴, 𝐵}, ℝ, < ))

Proof of Theorem xrminrecl
StepHypRef Expression
1 rexneg 9952 . . . . . . . 8 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
21adantr 276 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝑒𝐴 = -𝐴)
3 rexneg 9952 . . . . . . . 8 (𝐵 ∈ ℝ → -𝑒𝐵 = -𝐵)
43adantl 277 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝑒𝐵 = -𝐵)
52, 4preq12d 3718 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {-𝑒𝐴, -𝑒𝐵} = {-𝐴, -𝐵})
65supeq1d 7089 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = sup({-𝐴, -𝐵}, ℝ*, < ))
7 renegcl 8333 . . . . . 6 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
8 renegcl 8333 . . . . . 6 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
9 xrmaxrecl 11566 . . . . . 6 ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ*, < ) = sup({-𝐴, -𝐵}, ℝ, < ))
107, 8, 9syl2an 289 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ*, < ) = sup({-𝐴, -𝐵}, ℝ, < ))
116, 10eqtrd 2238 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = sup({-𝐴, -𝐵}, ℝ, < ))
12 xnegeq 9949 . . . 4 (sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = sup({-𝐴, -𝐵}, ℝ, < ) → -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = -𝑒sup({-𝐴, -𝐵}, ℝ, < ))
1311, 12syl 14 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = -𝑒sup({-𝐴, -𝐵}, ℝ, < ))
14 maxcl 11521 . . . . 5 ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ)
157, 8, 14syl2an 289 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ)
16 rexneg 9952 . . . 4 (sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ → -𝑒sup({-𝐴, -𝐵}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < ))
1715, 16syl 14 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝑒sup({-𝐴, -𝐵}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < ))
1813, 17eqtrd 2238 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = -sup({-𝐴, -𝐵}, ℝ, < ))
19 rexr 8118 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
20 rexr 8118 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
21 xrminmax 11576 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) = -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
2219, 20, 21syl2an 289 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ*, < ) = -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
23 minmax 11541 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < ))
2418, 22, 233eqtr4d 2248 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ*, < ) = inf({𝐴, 𝐵}, ℝ, < ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2176  {cpr 3634  supcsup 7084  infcinf 7085  cr 7924  *cxr 8106   < clt 8107  -cneg 8244  -𝑒cxne 9891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-rp 9776  df-xneg 9894  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310
This theorem is referenced by:  xrbdtri  11587  qtopbas  14994
  Copyright terms: Public domain W3C validator