Step | Hyp | Ref
| Expression |
1 | | eqid 2165 |
. . . 4
⊢ (𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < )) = (𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, <
)) |
2 | | simp1 987 |
. . . . 5
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → 𝐶 ∈ (∞Met‘𝑋)) |
3 | 2 | adantr 274 |
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → 𝐶 ∈ (∞Met‘𝑋)) |
4 | | simp2 988 |
. . . . 5
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → 𝐷 ∈ (∞Met‘𝑌)) |
5 | 4 | adantr 274 |
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → 𝐷 ∈ (∞Met‘𝑌)) |
6 | 1, 3, 5 | xmetxp 13147 |
. . 3
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → (𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < )) ∈
(∞Met‘(𝑋
× 𝑌))) |
7 | | simpl3 992 |
. . 3
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → 𝐸 ∈ (∞Met‘𝑍)) |
8 | | simprl 521 |
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → 𝐴 ∈ 𝑋) |
9 | | simprr 522 |
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → 𝐵 ∈ 𝑌) |
10 | 8, 9 | opelxpd 4637 |
. . 3
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑌)) |
11 | | eqid 2165 |
. . . 4
⊢
(MetOpen‘(𝑟
∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ))) =
(MetOpen‘(𝑟 ∈
(𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, <
))) |
12 | | txmetcnp.4 |
. . . 4
⊢ 𝐿 = (MetOpen‘𝐸) |
13 | 11, 12 | metcnp 13152 |
. . 3
⊢ (((𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < )) ∈
(∞Met‘(𝑋
× 𝑌)) ∧ 𝐸 ∈ (∞Met‘𝑍) ∧ 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑌)) → (𝐹 ∈ (((MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ))) CnP 𝐿)‘〈𝐴, 𝐵〉) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+
∀𝑡 ∈ (𝑋 × 𝑌)((〈𝐴, 𝐵〉(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘𝑡)) < 𝑧)))) |
14 | 6, 7, 10, 13 | syl3anc 1228 |
. 2
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → (𝐹 ∈ (((MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ))) CnP 𝐿)‘〈𝐴, 𝐵〉) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+
∀𝑡 ∈ (𝑋 × 𝑌)((〈𝐴, 𝐵〉(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘𝑡)) < 𝑧)))) |
15 | | metcn.2 |
. . . . . 6
⊢ 𝐽 = (MetOpen‘𝐶) |
16 | | metcn.4 |
. . . . . 6
⊢ 𝐾 = (MetOpen‘𝐷) |
17 | 1, 3, 5, 15, 16, 11 | xmettx 13150 |
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → (MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ))) = (𝐽 ×t 𝐾)) |
18 | 17 | oveq1d 5857 |
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → ((MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ))) CnP 𝐿) = ((𝐽 ×t 𝐾) CnP 𝐿)) |
19 | 18 | fveq1d 5488 |
. . 3
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → (((MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ))) CnP 𝐿)‘〈𝐴, 𝐵〉) = (((𝐽 ×t 𝐾) CnP 𝐿)‘〈𝐴, 𝐵〉)) |
20 | 19 | eleq2d 2236 |
. 2
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → (𝐹 ∈ (((MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ))) CnP 𝐿)‘〈𝐴, 𝐵〉) ↔ 𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘〈𝐴, 𝐵〉))) |
21 | | oveq2 5850 |
. . . . . . . . 9
⊢ (𝑡 = 〈𝑢, 𝑣〉 → (〈𝐴, 𝐵〉(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ))𝑡) = (〈𝐴, 𝐵〉(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ))〈𝑢, 𝑣〉)) |
22 | 21 | breq1d 3992 |
. . . . . . . 8
⊢ (𝑡 = 〈𝑢, 𝑣〉 → ((〈𝐴, 𝐵〉(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ))𝑡) < 𝑤 ↔ (〈𝐴, 𝐵〉(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ))〈𝑢, 𝑣〉) < 𝑤)) |
23 | | fveq2 5486 |
. . . . . . . . . 10
⊢ (𝑡 = 〈𝑢, 𝑣〉 → (𝐹‘𝑡) = (𝐹‘〈𝑢, 𝑣〉)) |
24 | 23 | oveq2d 5858 |
. . . . . . . . 9
⊢ (𝑡 = 〈𝑢, 𝑣〉 → ((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘𝑡)) = ((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘〈𝑢, 𝑣〉))) |
25 | 24 | breq1d 3992 |
. . . . . . . 8
⊢ (𝑡 = 〈𝑢, 𝑣〉 → (((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘𝑡)) < 𝑧 ↔ ((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘〈𝑢, 𝑣〉)) < 𝑧)) |
26 | 22, 25 | imbi12d 233 |
. . . . . . 7
⊢ (𝑡 = 〈𝑢, 𝑣〉 → (((〈𝐴, 𝐵〉(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘𝑡)) < 𝑧) ↔ ((〈𝐴, 𝐵〉(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ))〈𝑢, 𝑣〉) < 𝑤 → ((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘〈𝑢, 𝑣〉)) < 𝑧))) |
27 | 26 | ralxp 4747 |
. . . . . 6
⊢
(∀𝑡 ∈
(𝑋 × 𝑌)((〈𝐴, 𝐵〉(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘𝑡)) < 𝑧) ↔ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 ((〈𝐴, 𝐵〉(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ))〈𝑢, 𝑣〉) < 𝑤 → ((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘〈𝑢, 𝑣〉)) < 𝑧)) |
28 | 8 | ad4antr 486 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → 𝐴 ∈ 𝑋) |
29 | 9 | ad4antr 486 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → 𝐵 ∈ 𝑌) |
30 | 28, 29 | opelxpd 4637 |
. . . . . . . . . . . . 13
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑌)) |
31 | | simplr 520 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → 𝑢 ∈ 𝑋) |
32 | | simpr 109 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → 𝑣 ∈ 𝑌) |
33 | 31, 32 | opelxpd 4637 |
. . . . . . . . . . . . 13
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → 〈𝑢, 𝑣〉 ∈ (𝑋 × 𝑌)) |
34 | 2 | ad5antr 488 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → 𝐶 ∈ (∞Met‘𝑋)) |
35 | | xmetf 12990 |
. . . . . . . . . . . . . . . 16
⊢ (𝐶 ∈ (∞Met‘𝑋) → 𝐶:(𝑋 × 𝑋)⟶ℝ*) |
36 | 34, 35 | syl 14 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → 𝐶:(𝑋 × 𝑋)⟶ℝ*) |
37 | | op1stg 6118 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
38 | 28, 29, 37 | syl2anc 409 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
39 | 38, 28 | eqeltrd 2243 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → (1st ‘〈𝐴, 𝐵〉) ∈ 𝑋) |
40 | | op1stg 6118 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌) → (1st ‘〈𝑢, 𝑣〉) = 𝑢) |
41 | 40 | adantll 468 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → (1st ‘〈𝑢, 𝑣〉) = 𝑢) |
42 | 41, 31 | eqeltrd 2243 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → (1st ‘〈𝑢, 𝑣〉) ∈ 𝑋) |
43 | 36, 39, 42 | fovrnd 5986 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → ((1st ‘〈𝐴, 𝐵〉)𝐶(1st ‘〈𝑢, 𝑣〉)) ∈
ℝ*) |
44 | 4 | ad5antr 488 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → 𝐷 ∈ (∞Met‘𝑌)) |
45 | | xmetf 12990 |
. . . . . . . . . . . . . . . 16
⊢ (𝐷 ∈ (∞Met‘𝑌) → 𝐷:(𝑌 × 𝑌)⟶ℝ*) |
46 | 44, 45 | syl 14 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → 𝐷:(𝑌 × 𝑌)⟶ℝ*) |
47 | | op2ndg 6119 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
48 | 28, 29, 47 | syl2anc 409 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
49 | 48, 29 | eqeltrd 2243 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → (2nd ‘〈𝐴, 𝐵〉) ∈ 𝑌) |
50 | | op2ndg 6119 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌) → (2nd ‘〈𝑢, 𝑣〉) = 𝑣) |
51 | 50 | adantll 468 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → (2nd ‘〈𝑢, 𝑣〉) = 𝑣) |
52 | 51, 32 | eqeltrd 2243 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → (2nd ‘〈𝑢, 𝑣〉) ∈ 𝑌) |
53 | 46, 49, 52 | fovrnd 5986 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → ((2nd ‘〈𝐴, 𝐵〉)𝐷(2nd ‘〈𝑢, 𝑣〉)) ∈
ℝ*) |
54 | | xrmaxcl 11193 |
. . . . . . . . . . . . . 14
⊢
((((1st ‘〈𝐴, 𝐵〉)𝐶(1st ‘〈𝑢, 𝑣〉)) ∈ ℝ* ∧
((2nd ‘〈𝐴, 𝐵〉)𝐷(2nd ‘〈𝑢, 𝑣〉)) ∈ ℝ*) →
sup({((1st ‘〈𝐴, 𝐵〉)𝐶(1st ‘〈𝑢, 𝑣〉)), ((2nd ‘〈𝐴, 𝐵〉)𝐷(2nd ‘〈𝑢, 𝑣〉))}, ℝ*, < ) ∈
ℝ*) |
55 | 43, 53, 54 | syl2anc 409 |
. . . . . . . . . . . . 13
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → sup({((1st
‘〈𝐴, 𝐵〉)𝐶(1st ‘〈𝑢, 𝑣〉)), ((2nd ‘〈𝐴, 𝐵〉)𝐷(2nd ‘〈𝑢, 𝑣〉))}, ℝ*, < ) ∈
ℝ*) |
56 | | fveq2 5486 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = 〈𝐴, 𝐵〉 → (1st ‘𝑟) = (1st
‘〈𝐴, 𝐵〉)) |
57 | | fveq2 5486 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = 〈𝑢, 𝑣〉 → (1st ‘𝑠) = (1st
‘〈𝑢, 𝑣〉)) |
58 | 56, 57 | oveqan12d 5861 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑟 = 〈𝐴, 𝐵〉 ∧ 𝑠 = 〈𝑢, 𝑣〉) → ((1st ‘𝑟)𝐶(1st ‘𝑠)) = ((1st ‘〈𝐴, 𝐵〉)𝐶(1st ‘〈𝑢, 𝑣〉))) |
59 | | fveq2 5486 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = 〈𝐴, 𝐵〉 → (2nd ‘𝑟) = (2nd
‘〈𝐴, 𝐵〉)) |
60 | | fveq2 5486 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = 〈𝑢, 𝑣〉 → (2nd ‘𝑠) = (2nd
‘〈𝑢, 𝑣〉)) |
61 | 59, 60 | oveqan12d 5861 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑟 = 〈𝐴, 𝐵〉 ∧ 𝑠 = 〈𝑢, 𝑣〉) → ((2nd ‘𝑟)𝐷(2nd ‘𝑠)) = ((2nd ‘〈𝐴, 𝐵〉)𝐷(2nd ‘〈𝑢, 𝑣〉))) |
62 | 58, 61 | preq12d 3661 |
. . . . . . . . . . . . . . 15
⊢ ((𝑟 = 〈𝐴, 𝐵〉 ∧ 𝑠 = 〈𝑢, 𝑣〉) → {((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))} = {((1st ‘〈𝐴, 𝐵〉)𝐶(1st ‘〈𝑢, 𝑣〉)), ((2nd ‘〈𝐴, 𝐵〉)𝐷(2nd ‘〈𝑢, 𝑣〉))}) |
63 | 62 | supeq1d 6952 |
. . . . . . . . . . . . . 14
⊢ ((𝑟 = 〈𝐴, 𝐵〉 ∧ 𝑠 = 〈𝑢, 𝑣〉) → sup({((1st
‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ) =
sup({((1st ‘〈𝐴, 𝐵〉)𝐶(1st ‘〈𝑢, 𝑣〉)), ((2nd ‘〈𝐴, 𝐵〉)𝐷(2nd ‘〈𝑢, 𝑣〉))}, ℝ*, <
)) |
64 | 63, 1 | ovmpoga 5971 |
. . . . . . . . . . . . 13
⊢
((〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑌) ∧ 〈𝑢, 𝑣〉 ∈ (𝑋 × 𝑌) ∧ sup({((1st
‘〈𝐴, 𝐵〉)𝐶(1st ‘〈𝑢, 𝑣〉)), ((2nd ‘〈𝐴, 𝐵〉)𝐷(2nd ‘〈𝑢, 𝑣〉))}, ℝ*, < ) ∈
ℝ*) → (〈𝐴, 𝐵〉(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ))〈𝑢, 𝑣〉) = sup({((1st
‘〈𝐴, 𝐵〉)𝐶(1st ‘〈𝑢, 𝑣〉)), ((2nd ‘〈𝐴, 𝐵〉)𝐷(2nd ‘〈𝑢, 𝑣〉))}, ℝ*, <
)) |
65 | 30, 33, 55, 64 | syl3anc 1228 |
. . . . . . . . . . . 12
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → (〈𝐴, 𝐵〉(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ))〈𝑢, 𝑣〉) = sup({((1st
‘〈𝐴, 𝐵〉)𝐶(1st ‘〈𝑢, 𝑣〉)), ((2nd ‘〈𝐴, 𝐵〉)𝐷(2nd ‘〈𝑢, 𝑣〉))}, ℝ*, <
)) |
66 | 38, 41 | oveq12d 5860 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → ((1st ‘〈𝐴, 𝐵〉)𝐶(1st ‘〈𝑢, 𝑣〉)) = (𝐴𝐶𝑢)) |
67 | 48, 51 | oveq12d 5860 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → ((2nd ‘〈𝐴, 𝐵〉)𝐷(2nd ‘〈𝑢, 𝑣〉)) = (𝐵𝐷𝑣)) |
68 | 66, 67 | preq12d 3661 |
. . . . . . . . . . . . 13
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → {((1st
‘〈𝐴, 𝐵〉)𝐶(1st ‘〈𝑢, 𝑣〉)), ((2nd ‘〈𝐴, 𝐵〉)𝐷(2nd ‘〈𝑢, 𝑣〉))} = {(𝐴𝐶𝑢), (𝐵𝐷𝑣)}) |
69 | 68 | supeq1d 6952 |
. . . . . . . . . . . 12
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → sup({((1st
‘〈𝐴, 𝐵〉)𝐶(1st ‘〈𝑢, 𝑣〉)), ((2nd ‘〈𝐴, 𝐵〉)𝐷(2nd ‘〈𝑢, 𝑣〉))}, ℝ*, < ) =
sup({(𝐴𝐶𝑢), (𝐵𝐷𝑣)}, ℝ*, <
)) |
70 | 65, 69 | eqtrd 2198 |
. . . . . . . . . . 11
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → (〈𝐴, 𝐵〉(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ))〈𝑢, 𝑣〉) = sup({(𝐴𝐶𝑢), (𝐵𝐷𝑣)}, ℝ*, <
)) |
71 | 70 | breq1d 3992 |
. . . . . . . . . 10
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → ((〈𝐴, 𝐵〉(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ))〈𝑢, 𝑣〉) < 𝑤 ↔ sup({(𝐴𝐶𝑢), (𝐵𝐷𝑣)}, ℝ*, < ) < 𝑤)) |
72 | | xmetcl 12992 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋) → (𝐴𝐶𝑢) ∈
ℝ*) |
73 | 34, 28, 31, 72 | syl3anc 1228 |
. . . . . . . . . . 11
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → (𝐴𝐶𝑢) ∈
ℝ*) |
74 | | xmetcl 12992 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑌) ∧ 𝐵 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌) → (𝐵𝐷𝑣) ∈
ℝ*) |
75 | 44, 29, 32, 74 | syl3anc 1228 |
. . . . . . . . . . 11
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → (𝐵𝐷𝑣) ∈
ℝ*) |
76 | | rpxr 9597 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ ℝ+
→ 𝑤 ∈
ℝ*) |
77 | 76 | ad3antlr 485 |
. . . . . . . . . . 11
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → 𝑤 ∈ ℝ*) |
78 | | xrmaxltsup 11199 |
. . . . . . . . . . 11
⊢ (((𝐴𝐶𝑢) ∈ ℝ* ∧ (𝐵𝐷𝑣) ∈ ℝ* ∧ 𝑤 ∈ ℝ*)
→ (sup({(𝐴𝐶𝑢), (𝐵𝐷𝑣)}, ℝ*, < ) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤))) |
79 | 73, 75, 77, 78 | syl3anc 1228 |
. . . . . . . . . 10
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → (sup({(𝐴𝐶𝑢), (𝐵𝐷𝑣)}, ℝ*, < ) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤))) |
80 | 71, 79 | bitrd 187 |
. . . . . . . . 9
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → ((〈𝐴, 𝐵〉(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ))〈𝑢, 𝑣〉) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤))) |
81 | | df-ov 5845 |
. . . . . . . . . . . . 13
⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) |
82 | | df-ov 5845 |
. . . . . . . . . . . . 13
⊢ (𝑢𝐹𝑣) = (𝐹‘〈𝑢, 𝑣〉) |
83 | 81, 82 | oveq12i 5854 |
. . . . . . . . . . . 12
⊢ ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) = ((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘〈𝑢, 𝑣〉)) |
84 | 83 | breq1i 3989 |
. . . . . . . . . . 11
⊢ (((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧 ↔ ((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘〈𝑢, 𝑣〉)) < 𝑧) |
85 | 84 | bicomi 131 |
. . . . . . . . . 10
⊢ (((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘〈𝑢, 𝑣〉)) < 𝑧 ↔ ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧) |
86 | 85 | a1i 9 |
. . . . . . . . 9
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → (((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘〈𝑢, 𝑣〉)) < 𝑧 ↔ ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)) |
87 | 80, 86 | imbi12d 233 |
. . . . . . . 8
⊢
(((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) ∧ 𝑣 ∈ 𝑌) → (((〈𝐴, 𝐵〉(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ))〈𝑢, 𝑣〉) < 𝑤 → ((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘〈𝑢, 𝑣〉)) < 𝑧) ↔ (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))) |
88 | 87 | ralbidva 2462 |
. . . . . . 7
⊢
((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
∧ 𝑢 ∈ 𝑋) → (∀𝑣 ∈ 𝑌 ((〈𝐴, 𝐵〉(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ))〈𝑢, 𝑣〉) < 𝑤 → ((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘〈𝑢, 𝑣〉)) < 𝑧) ↔ ∀𝑣 ∈ 𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))) |
89 | 88 | ralbidva 2462 |
. . . . . 6
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
→ (∀𝑢 ∈
𝑋 ∀𝑣 ∈ 𝑌 ((〈𝐴, 𝐵〉(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ))〈𝑢, 𝑣〉) < 𝑤 → ((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘〈𝑢, 𝑣〉)) < 𝑧) ↔ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))) |
90 | 27, 89 | syl5bb 191 |
. . . . 5
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+)
→ (∀𝑡 ∈
(𝑋 × 𝑌)((〈𝐴, 𝐵〉(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘𝑡)) < 𝑧) ↔ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))) |
91 | 90 | rexbidva 2463 |
. . . 4
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝑧 ∈ ℝ+) →
(∃𝑤 ∈
ℝ+ ∀𝑡 ∈ (𝑋 × 𝑌)((〈𝐴, 𝐵〉(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘𝑡)) < 𝑧) ↔ ∃𝑤 ∈ ℝ+ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))) |
92 | 91 | ralbidva 2462 |
. . 3
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → (∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+
∀𝑡 ∈ (𝑋 × 𝑌)((〈𝐴, 𝐵〉(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘𝑡)) < 𝑧) ↔ ∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+
∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))) |
93 | 92 | anbi2d 460 |
. 2
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → ((𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+
∀𝑡 ∈ (𝑋 × 𝑌)((〈𝐴, 𝐵〉(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st ‘𝑟)𝐶(1st ‘𝑠)), ((2nd ‘𝑟)𝐷(2nd ‘𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘𝑡)) < 𝑧)) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+
∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))) |
94 | 14, 20, 93 | 3bitr3d 217 |
1
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘〈𝐴, 𝐵〉) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+
∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))) |