ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txmetcnp GIF version

Theorem txmetcnp 14057
Description: Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.) (Revised by Jim Kingdon, 22-Oct-2023.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpenβ€˜πΆ)
metcn.4 𝐾 = (MetOpenβ€˜π·)
txmetcnp.4 𝐿 = (MetOpenβ€˜πΈ)
Assertion
Ref Expression
txmetcnp (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) β†’ (𝐹 ∈ (((𝐽 Γ—t 𝐾) CnP 𝐿)β€˜βŸ¨π΄, 𝐡⟩) ↔ (𝐹:(𝑋 Γ— π‘Œ)βŸΆπ‘ ∧ βˆ€π‘§ ∈ ℝ+ βˆƒπ‘€ ∈ ℝ+ βˆ€π‘’ ∈ 𝑋 βˆ€π‘£ ∈ π‘Œ (((𝐴𝐢𝑒) < 𝑀 ∧ (𝐡𝐷𝑣) < 𝑀) β†’ ((𝐴𝐹𝐡)𝐸(𝑒𝐹𝑣)) < 𝑧))))
Distinct variable groups:   𝑣,𝑒,𝑀,𝑧,𝐹   𝑒,𝐽,𝑣,𝑀,𝑧   𝑒,𝐾,𝑣,𝑀,𝑧   𝑒,𝑋,𝑣,𝑀,𝑧   𝑒,π‘Œ,𝑣,𝑀,𝑧   𝑒,𝑍,𝑣,𝑀,𝑧   𝑒,𝐴,𝑣,𝑀,𝑧   𝑒,𝐢,𝑣,𝑀,𝑧   𝑒,𝐷,𝑣,𝑀,𝑧   𝑒,𝐡,𝑣,𝑀,𝑧   𝑒,𝐸,𝑣,𝑀,𝑧   𝑀,𝐿,𝑧
Allowed substitution hints:   𝐿(𝑣,𝑒)

Proof of Theorem txmetcnp
Dummy variables 𝑑 𝑠 π‘Ÿ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . . . 4 (π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < )) = (π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))
2 simp1 997 . . . . 5 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) β†’ 𝐢 ∈ (∞Metβ€˜π‘‹))
32adantr 276 . . . 4 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) β†’ 𝐢 ∈ (∞Metβ€˜π‘‹))
4 simp2 998 . . . . 5 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) β†’ 𝐷 ∈ (∞Metβ€˜π‘Œ))
54adantr 276 . . . 4 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) β†’ 𝐷 ∈ (∞Metβ€˜π‘Œ))
61, 3, 5xmetxp 14046 . . 3 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) β†’ (π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < )) ∈ (∞Metβ€˜(𝑋 Γ— π‘Œ)))
7 simpl3 1002 . . 3 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) β†’ 𝐸 ∈ (∞Metβ€˜π‘))
8 simprl 529 . . . 4 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) β†’ 𝐴 ∈ 𝑋)
9 simprr 531 . . . 4 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) β†’ 𝐡 ∈ π‘Œ)
108, 9opelxpd 4661 . . 3 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) β†’ ⟨𝐴, 𝐡⟩ ∈ (𝑋 Γ— π‘Œ))
11 eqid 2177 . . . 4 (MetOpenβ€˜(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))) = (MetOpenβ€˜(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < )))
12 txmetcnp.4 . . . 4 𝐿 = (MetOpenβ€˜πΈ)
1311, 12metcnp 14051 . . 3 (((π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < )) ∈ (∞Metβ€˜(𝑋 Γ— π‘Œ)) ∧ 𝐸 ∈ (∞Metβ€˜π‘) ∧ ⟨𝐴, 𝐡⟩ ∈ (𝑋 Γ— π‘Œ)) β†’ (𝐹 ∈ (((MetOpenβ€˜(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))) CnP 𝐿)β€˜βŸ¨π΄, 𝐡⟩) ↔ (𝐹:(𝑋 Γ— π‘Œ)βŸΆπ‘ ∧ βˆ€π‘§ ∈ ℝ+ βˆƒπ‘€ ∈ ℝ+ βˆ€π‘‘ ∈ (𝑋 Γ— π‘Œ)((⟨𝐴, 𝐡⟩(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))𝑑) < 𝑀 β†’ ((πΉβ€˜βŸ¨π΄, 𝐡⟩)𝐸(πΉβ€˜π‘‘)) < 𝑧))))
146, 7, 10, 13syl3anc 1238 . 2 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) β†’ (𝐹 ∈ (((MetOpenβ€˜(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))) CnP 𝐿)β€˜βŸ¨π΄, 𝐡⟩) ↔ (𝐹:(𝑋 Γ— π‘Œ)βŸΆπ‘ ∧ βˆ€π‘§ ∈ ℝ+ βˆƒπ‘€ ∈ ℝ+ βˆ€π‘‘ ∈ (𝑋 Γ— π‘Œ)((⟨𝐴, 𝐡⟩(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))𝑑) < 𝑀 β†’ ((πΉβ€˜βŸ¨π΄, 𝐡⟩)𝐸(πΉβ€˜π‘‘)) < 𝑧))))
15 metcn.2 . . . . . 6 𝐽 = (MetOpenβ€˜πΆ)
16 metcn.4 . . . . . 6 𝐾 = (MetOpenβ€˜π·)
171, 3, 5, 15, 16, 11xmettx 14049 . . . . 5 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) β†’ (MetOpenβ€˜(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))) = (𝐽 Γ—t 𝐾))
1817oveq1d 5892 . . . 4 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) β†’ ((MetOpenβ€˜(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))) CnP 𝐿) = ((𝐽 Γ—t 𝐾) CnP 𝐿))
1918fveq1d 5519 . . 3 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) β†’ (((MetOpenβ€˜(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))) CnP 𝐿)β€˜βŸ¨π΄, 𝐡⟩) = (((𝐽 Γ—t 𝐾) CnP 𝐿)β€˜βŸ¨π΄, 𝐡⟩))
2019eleq2d 2247 . 2 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) β†’ (𝐹 ∈ (((MetOpenβ€˜(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))) CnP 𝐿)β€˜βŸ¨π΄, 𝐡⟩) ↔ 𝐹 ∈ (((𝐽 Γ—t 𝐾) CnP 𝐿)β€˜βŸ¨π΄, 𝐡⟩)))
21 oveq2 5885 . . . . . . . . 9 (𝑑 = βŸ¨π‘’, π‘£βŸ© β†’ (⟨𝐴, 𝐡⟩(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))𝑑) = (⟨𝐴, 𝐡⟩(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))βŸ¨π‘’, π‘£βŸ©))
2221breq1d 4015 . . . . . . . 8 (𝑑 = βŸ¨π‘’, π‘£βŸ© β†’ ((⟨𝐴, 𝐡⟩(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))𝑑) < 𝑀 ↔ (⟨𝐴, 𝐡⟩(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))βŸ¨π‘’, π‘£βŸ©) < 𝑀))
23 fveq2 5517 . . . . . . . . . 10 (𝑑 = βŸ¨π‘’, π‘£βŸ© β†’ (πΉβ€˜π‘‘) = (πΉβ€˜βŸ¨π‘’, π‘£βŸ©))
2423oveq2d 5893 . . . . . . . . 9 (𝑑 = βŸ¨π‘’, π‘£βŸ© β†’ ((πΉβ€˜βŸ¨π΄, 𝐡⟩)𝐸(πΉβ€˜π‘‘)) = ((πΉβ€˜βŸ¨π΄, 𝐡⟩)𝐸(πΉβ€˜βŸ¨π‘’, π‘£βŸ©)))
2524breq1d 4015 . . . . . . . 8 (𝑑 = βŸ¨π‘’, π‘£βŸ© β†’ (((πΉβ€˜βŸ¨π΄, 𝐡⟩)𝐸(πΉβ€˜π‘‘)) < 𝑧 ↔ ((πΉβ€˜βŸ¨π΄, 𝐡⟩)𝐸(πΉβ€˜βŸ¨π‘’, π‘£βŸ©)) < 𝑧))
2622, 25imbi12d 234 . . . . . . 7 (𝑑 = βŸ¨π‘’, π‘£βŸ© β†’ (((⟨𝐴, 𝐡⟩(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))𝑑) < 𝑀 β†’ ((πΉβ€˜βŸ¨π΄, 𝐡⟩)𝐸(πΉβ€˜π‘‘)) < 𝑧) ↔ ((⟨𝐴, 𝐡⟩(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))βŸ¨π‘’, π‘£βŸ©) < 𝑀 β†’ ((πΉβ€˜βŸ¨π΄, 𝐡⟩)𝐸(πΉβ€˜βŸ¨π‘’, π‘£βŸ©)) < 𝑧)))
2726ralxp 4772 . . . . . 6 (βˆ€π‘‘ ∈ (𝑋 Γ— π‘Œ)((⟨𝐴, 𝐡⟩(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))𝑑) < 𝑀 β†’ ((πΉβ€˜βŸ¨π΄, 𝐡⟩)𝐸(πΉβ€˜π‘‘)) < 𝑧) ↔ βˆ€π‘’ ∈ 𝑋 βˆ€π‘£ ∈ π‘Œ ((⟨𝐴, 𝐡⟩(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))βŸ¨π‘’, π‘£βŸ©) < 𝑀 β†’ ((πΉβ€˜βŸ¨π΄, 𝐡⟩)𝐸(πΉβ€˜βŸ¨π‘’, π‘£βŸ©)) < 𝑧))
288ad4antr 494 . . . . . . . . . . . . . 14 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ 𝐴 ∈ 𝑋)
299ad4antr 494 . . . . . . . . . . . . . 14 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ 𝐡 ∈ π‘Œ)
3028, 29opelxpd 4661 . . . . . . . . . . . . 13 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ ⟨𝐴, 𝐡⟩ ∈ (𝑋 Γ— π‘Œ))
31 simplr 528 . . . . . . . . . . . . . 14 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ 𝑒 ∈ 𝑋)
32 simpr 110 . . . . . . . . . . . . . 14 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ 𝑣 ∈ π‘Œ)
3331, 32opelxpd 4661 . . . . . . . . . . . . 13 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ βŸ¨π‘’, π‘£βŸ© ∈ (𝑋 Γ— π‘Œ))
342ad5antr 496 . . . . . . . . . . . . . . . 16 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ 𝐢 ∈ (∞Metβ€˜π‘‹))
35 xmetf 13889 . . . . . . . . . . . . . . . 16 (𝐢 ∈ (∞Metβ€˜π‘‹) β†’ 𝐢:(𝑋 Γ— 𝑋)βŸΆβ„*)
3634, 35syl 14 . . . . . . . . . . . . . . 15 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ 𝐢:(𝑋 Γ— 𝑋)βŸΆβ„*)
37 op1stg 6153 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ) β†’ (1st β€˜βŸ¨π΄, 𝐡⟩) = 𝐴)
3828, 29, 37syl2anc 411 . . . . . . . . . . . . . . . 16 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ (1st β€˜βŸ¨π΄, 𝐡⟩) = 𝐴)
3938, 28eqeltrd 2254 . . . . . . . . . . . . . . 15 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ (1st β€˜βŸ¨π΄, 𝐡⟩) ∈ 𝑋)
40 op1stg 6153 . . . . . . . . . . . . . . . . 17 ((𝑒 ∈ 𝑋 ∧ 𝑣 ∈ π‘Œ) β†’ (1st β€˜βŸ¨π‘’, π‘£βŸ©) = 𝑒)
4140adantll 476 . . . . . . . . . . . . . . . 16 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ (1st β€˜βŸ¨π‘’, π‘£βŸ©) = 𝑒)
4241, 31eqeltrd 2254 . . . . . . . . . . . . . . 15 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ (1st β€˜βŸ¨π‘’, π‘£βŸ©) ∈ 𝑋)
4336, 39, 42fovcdmd 6021 . . . . . . . . . . . . . 14 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ ((1st β€˜βŸ¨π΄, 𝐡⟩)𝐢(1st β€˜βŸ¨π‘’, π‘£βŸ©)) ∈ ℝ*)
444ad5antr 496 . . . . . . . . . . . . . . . 16 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ 𝐷 ∈ (∞Metβ€˜π‘Œ))
45 xmetf 13889 . . . . . . . . . . . . . . . 16 (𝐷 ∈ (∞Metβ€˜π‘Œ) β†’ 𝐷:(π‘Œ Γ— π‘Œ)βŸΆβ„*)
4644, 45syl 14 . . . . . . . . . . . . . . 15 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ 𝐷:(π‘Œ Γ— π‘Œ)βŸΆβ„*)
47 op2ndg 6154 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ) β†’ (2nd β€˜βŸ¨π΄, 𝐡⟩) = 𝐡)
4828, 29, 47syl2anc 411 . . . . . . . . . . . . . . . 16 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ (2nd β€˜βŸ¨π΄, 𝐡⟩) = 𝐡)
4948, 29eqeltrd 2254 . . . . . . . . . . . . . . 15 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ (2nd β€˜βŸ¨π΄, 𝐡⟩) ∈ π‘Œ)
50 op2ndg 6154 . . . . . . . . . . . . . . . . 17 ((𝑒 ∈ 𝑋 ∧ 𝑣 ∈ π‘Œ) β†’ (2nd β€˜βŸ¨π‘’, π‘£βŸ©) = 𝑣)
5150adantll 476 . . . . . . . . . . . . . . . 16 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ (2nd β€˜βŸ¨π‘’, π‘£βŸ©) = 𝑣)
5251, 32eqeltrd 2254 . . . . . . . . . . . . . . 15 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ (2nd β€˜βŸ¨π‘’, π‘£βŸ©) ∈ π‘Œ)
5346, 49, 52fovcdmd 6021 . . . . . . . . . . . . . 14 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ ((2nd β€˜βŸ¨π΄, 𝐡⟩)𝐷(2nd β€˜βŸ¨π‘’, π‘£βŸ©)) ∈ ℝ*)
54 xrmaxcl 11262 . . . . . . . . . . . . . 14 ((((1st β€˜βŸ¨π΄, 𝐡⟩)𝐢(1st β€˜βŸ¨π‘’, π‘£βŸ©)) ∈ ℝ* ∧ ((2nd β€˜βŸ¨π΄, 𝐡⟩)𝐷(2nd β€˜βŸ¨π‘’, π‘£βŸ©)) ∈ ℝ*) β†’ sup({((1st β€˜βŸ¨π΄, 𝐡⟩)𝐢(1st β€˜βŸ¨π‘’, π‘£βŸ©)), ((2nd β€˜βŸ¨π΄, 𝐡⟩)𝐷(2nd β€˜βŸ¨π‘’, π‘£βŸ©))}, ℝ*, < ) ∈ ℝ*)
5543, 53, 54syl2anc 411 . . . . . . . . . . . . 13 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ sup({((1st β€˜βŸ¨π΄, 𝐡⟩)𝐢(1st β€˜βŸ¨π‘’, π‘£βŸ©)), ((2nd β€˜βŸ¨π΄, 𝐡⟩)𝐷(2nd β€˜βŸ¨π‘’, π‘£βŸ©))}, ℝ*, < ) ∈ ℝ*)
56 fveq2 5517 . . . . . . . . . . . . . . . . 17 (π‘Ÿ = ⟨𝐴, 𝐡⟩ β†’ (1st β€˜π‘Ÿ) = (1st β€˜βŸ¨π΄, 𝐡⟩))
57 fveq2 5517 . . . . . . . . . . . . . . . . 17 (𝑠 = βŸ¨π‘’, π‘£βŸ© β†’ (1st β€˜π‘ ) = (1st β€˜βŸ¨π‘’, π‘£βŸ©))
5856, 57oveqan12d 5896 . . . . . . . . . . . . . . . 16 ((π‘Ÿ = ⟨𝐴, 𝐡⟩ ∧ 𝑠 = βŸ¨π‘’, π‘£βŸ©) β†’ ((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )) = ((1st β€˜βŸ¨π΄, 𝐡⟩)𝐢(1st β€˜βŸ¨π‘’, π‘£βŸ©)))
59 fveq2 5517 . . . . . . . . . . . . . . . . 17 (π‘Ÿ = ⟨𝐴, 𝐡⟩ β†’ (2nd β€˜π‘Ÿ) = (2nd β€˜βŸ¨π΄, 𝐡⟩))
60 fveq2 5517 . . . . . . . . . . . . . . . . 17 (𝑠 = βŸ¨π‘’, π‘£βŸ© β†’ (2nd β€˜π‘ ) = (2nd β€˜βŸ¨π‘’, π‘£βŸ©))
6159, 60oveqan12d 5896 . . . . . . . . . . . . . . . 16 ((π‘Ÿ = ⟨𝐴, 𝐡⟩ ∧ 𝑠 = βŸ¨π‘’, π‘£βŸ©) β†’ ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ )) = ((2nd β€˜βŸ¨π΄, 𝐡⟩)𝐷(2nd β€˜βŸ¨π‘’, π‘£βŸ©)))
6258, 61preq12d 3679 . . . . . . . . . . . . . . 15 ((π‘Ÿ = ⟨𝐴, 𝐡⟩ ∧ 𝑠 = βŸ¨π‘’, π‘£βŸ©) β†’ {((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))} = {((1st β€˜βŸ¨π΄, 𝐡⟩)𝐢(1st β€˜βŸ¨π‘’, π‘£βŸ©)), ((2nd β€˜βŸ¨π΄, 𝐡⟩)𝐷(2nd β€˜βŸ¨π‘’, π‘£βŸ©))})
6362supeq1d 6988 . . . . . . . . . . . . . 14 ((π‘Ÿ = ⟨𝐴, 𝐡⟩ ∧ 𝑠 = βŸ¨π‘’, π‘£βŸ©) β†’ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ) = sup({((1st β€˜βŸ¨π΄, 𝐡⟩)𝐢(1st β€˜βŸ¨π‘’, π‘£βŸ©)), ((2nd β€˜βŸ¨π΄, 𝐡⟩)𝐷(2nd β€˜βŸ¨π‘’, π‘£βŸ©))}, ℝ*, < ))
6463, 1ovmpoga 6006 . . . . . . . . . . . . 13 ((⟨𝐴, 𝐡⟩ ∈ (𝑋 Γ— π‘Œ) ∧ βŸ¨π‘’, π‘£βŸ© ∈ (𝑋 Γ— π‘Œ) ∧ sup({((1st β€˜βŸ¨π΄, 𝐡⟩)𝐢(1st β€˜βŸ¨π‘’, π‘£βŸ©)), ((2nd β€˜βŸ¨π΄, 𝐡⟩)𝐷(2nd β€˜βŸ¨π‘’, π‘£βŸ©))}, ℝ*, < ) ∈ ℝ*) β†’ (⟨𝐴, 𝐡⟩(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))βŸ¨π‘’, π‘£βŸ©) = sup({((1st β€˜βŸ¨π΄, 𝐡⟩)𝐢(1st β€˜βŸ¨π‘’, π‘£βŸ©)), ((2nd β€˜βŸ¨π΄, 𝐡⟩)𝐷(2nd β€˜βŸ¨π‘’, π‘£βŸ©))}, ℝ*, < ))
6530, 33, 55, 64syl3anc 1238 . . . . . . . . . . . 12 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ (⟨𝐴, 𝐡⟩(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))βŸ¨π‘’, π‘£βŸ©) = sup({((1st β€˜βŸ¨π΄, 𝐡⟩)𝐢(1st β€˜βŸ¨π‘’, π‘£βŸ©)), ((2nd β€˜βŸ¨π΄, 𝐡⟩)𝐷(2nd β€˜βŸ¨π‘’, π‘£βŸ©))}, ℝ*, < ))
6638, 41oveq12d 5895 . . . . . . . . . . . . . 14 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ ((1st β€˜βŸ¨π΄, 𝐡⟩)𝐢(1st β€˜βŸ¨π‘’, π‘£βŸ©)) = (𝐴𝐢𝑒))
6748, 51oveq12d 5895 . . . . . . . . . . . . . 14 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ ((2nd β€˜βŸ¨π΄, 𝐡⟩)𝐷(2nd β€˜βŸ¨π‘’, π‘£βŸ©)) = (𝐡𝐷𝑣))
6866, 67preq12d 3679 . . . . . . . . . . . . 13 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ {((1st β€˜βŸ¨π΄, 𝐡⟩)𝐢(1st β€˜βŸ¨π‘’, π‘£βŸ©)), ((2nd β€˜βŸ¨π΄, 𝐡⟩)𝐷(2nd β€˜βŸ¨π‘’, π‘£βŸ©))} = {(𝐴𝐢𝑒), (𝐡𝐷𝑣)})
6968supeq1d 6988 . . . . . . . . . . . 12 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ sup({((1st β€˜βŸ¨π΄, 𝐡⟩)𝐢(1st β€˜βŸ¨π‘’, π‘£βŸ©)), ((2nd β€˜βŸ¨π΄, 𝐡⟩)𝐷(2nd β€˜βŸ¨π‘’, π‘£βŸ©))}, ℝ*, < ) = sup({(𝐴𝐢𝑒), (𝐡𝐷𝑣)}, ℝ*, < ))
7065, 69eqtrd 2210 . . . . . . . . . . 11 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ (⟨𝐴, 𝐡⟩(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))βŸ¨π‘’, π‘£βŸ©) = sup({(𝐴𝐢𝑒), (𝐡𝐷𝑣)}, ℝ*, < ))
7170breq1d 4015 . . . . . . . . . 10 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ ((⟨𝐴, 𝐡⟩(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))βŸ¨π‘’, π‘£βŸ©) < 𝑀 ↔ sup({(𝐴𝐢𝑒), (𝐡𝐷𝑣)}, ℝ*, < ) < 𝑀))
72 xmetcl 13891 . . . . . . . . . . . 12 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝑒 ∈ 𝑋) β†’ (𝐴𝐢𝑒) ∈ ℝ*)
7334, 28, 31, 72syl3anc 1238 . . . . . . . . . . 11 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ (𝐴𝐢𝑒) ∈ ℝ*)
74 xmetcl 13891 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐡 ∈ π‘Œ ∧ 𝑣 ∈ π‘Œ) β†’ (𝐡𝐷𝑣) ∈ ℝ*)
7544, 29, 32, 74syl3anc 1238 . . . . . . . . . . 11 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ (𝐡𝐷𝑣) ∈ ℝ*)
76 rpxr 9663 . . . . . . . . . . . 12 (𝑀 ∈ ℝ+ β†’ 𝑀 ∈ ℝ*)
7776ad3antlr 493 . . . . . . . . . . 11 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ 𝑀 ∈ ℝ*)
78 xrmaxltsup 11268 . . . . . . . . . . 11 (((𝐴𝐢𝑒) ∈ ℝ* ∧ (𝐡𝐷𝑣) ∈ ℝ* ∧ 𝑀 ∈ ℝ*) β†’ (sup({(𝐴𝐢𝑒), (𝐡𝐷𝑣)}, ℝ*, < ) < 𝑀 ↔ ((𝐴𝐢𝑒) < 𝑀 ∧ (𝐡𝐷𝑣) < 𝑀)))
7973, 75, 77, 78syl3anc 1238 . . . . . . . . . 10 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ (sup({(𝐴𝐢𝑒), (𝐡𝐷𝑣)}, ℝ*, < ) < 𝑀 ↔ ((𝐴𝐢𝑒) < 𝑀 ∧ (𝐡𝐷𝑣) < 𝑀)))
8071, 79bitrd 188 . . . . . . . . 9 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ ((⟨𝐴, 𝐡⟩(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))βŸ¨π‘’, π‘£βŸ©) < 𝑀 ↔ ((𝐴𝐢𝑒) < 𝑀 ∧ (𝐡𝐷𝑣) < 𝑀)))
81 df-ov 5880 . . . . . . . . . . . . 13 (𝐴𝐹𝐡) = (πΉβ€˜βŸ¨π΄, 𝐡⟩)
82 df-ov 5880 . . . . . . . . . . . . 13 (𝑒𝐹𝑣) = (πΉβ€˜βŸ¨π‘’, π‘£βŸ©)
8381, 82oveq12i 5889 . . . . . . . . . . . 12 ((𝐴𝐹𝐡)𝐸(𝑒𝐹𝑣)) = ((πΉβ€˜βŸ¨π΄, 𝐡⟩)𝐸(πΉβ€˜βŸ¨π‘’, π‘£βŸ©))
8483breq1i 4012 . . . . . . . . . . 11 (((𝐴𝐹𝐡)𝐸(𝑒𝐹𝑣)) < 𝑧 ↔ ((πΉβ€˜βŸ¨π΄, 𝐡⟩)𝐸(πΉβ€˜βŸ¨π‘’, π‘£βŸ©)) < 𝑧)
8584bicomi 132 . . . . . . . . . 10 (((πΉβ€˜βŸ¨π΄, 𝐡⟩)𝐸(πΉβ€˜βŸ¨π‘’, π‘£βŸ©)) < 𝑧 ↔ ((𝐴𝐹𝐡)𝐸(𝑒𝐹𝑣)) < 𝑧)
8685a1i 9 . . . . . . . . 9 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ (((πΉβ€˜βŸ¨π΄, 𝐡⟩)𝐸(πΉβ€˜βŸ¨π‘’, π‘£βŸ©)) < 𝑧 ↔ ((𝐴𝐹𝐡)𝐸(𝑒𝐹𝑣)) < 𝑧))
8780, 86imbi12d 234 . . . . . . . 8 (((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) ∧ 𝑣 ∈ π‘Œ) β†’ (((⟨𝐴, 𝐡⟩(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))βŸ¨π‘’, π‘£βŸ©) < 𝑀 β†’ ((πΉβ€˜βŸ¨π΄, 𝐡⟩)𝐸(πΉβ€˜βŸ¨π‘’, π‘£βŸ©)) < 𝑧) ↔ (((𝐴𝐢𝑒) < 𝑀 ∧ (𝐡𝐷𝑣) < 𝑀) β†’ ((𝐴𝐹𝐡)𝐸(𝑒𝐹𝑣)) < 𝑧)))
8887ralbidva 2473 . . . . . . 7 ((((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) ∧ 𝑒 ∈ 𝑋) β†’ (βˆ€π‘£ ∈ π‘Œ ((⟨𝐴, 𝐡⟩(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))βŸ¨π‘’, π‘£βŸ©) < 𝑀 β†’ ((πΉβ€˜βŸ¨π΄, 𝐡⟩)𝐸(πΉβ€˜βŸ¨π‘’, π‘£βŸ©)) < 𝑧) ↔ βˆ€π‘£ ∈ π‘Œ (((𝐴𝐢𝑒) < 𝑀 ∧ (𝐡𝐷𝑣) < 𝑀) β†’ ((𝐴𝐹𝐡)𝐸(𝑒𝐹𝑣)) < 𝑧)))
8988ralbidva 2473 . . . . . 6 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) β†’ (βˆ€π‘’ ∈ 𝑋 βˆ€π‘£ ∈ π‘Œ ((⟨𝐴, 𝐡⟩(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))βŸ¨π‘’, π‘£βŸ©) < 𝑀 β†’ ((πΉβ€˜βŸ¨π΄, 𝐡⟩)𝐸(πΉβ€˜βŸ¨π‘’, π‘£βŸ©)) < 𝑧) ↔ βˆ€π‘’ ∈ 𝑋 βˆ€π‘£ ∈ π‘Œ (((𝐴𝐢𝑒) < 𝑀 ∧ (𝐡𝐷𝑣) < 𝑀) β†’ ((𝐴𝐹𝐡)𝐸(𝑒𝐹𝑣)) < 𝑧)))
9027, 89bitrid 192 . . . . 5 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑀 ∈ ℝ+) β†’ (βˆ€π‘‘ ∈ (𝑋 Γ— π‘Œ)((⟨𝐴, 𝐡⟩(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))𝑑) < 𝑀 β†’ ((πΉβ€˜βŸ¨π΄, 𝐡⟩)𝐸(πΉβ€˜π‘‘)) < 𝑧) ↔ βˆ€π‘’ ∈ 𝑋 βˆ€π‘£ ∈ π‘Œ (((𝐴𝐢𝑒) < 𝑀 ∧ (𝐡𝐷𝑣) < 𝑀) β†’ ((𝐴𝐹𝐡)𝐸(𝑒𝐹𝑣)) < 𝑧)))
9190rexbidva 2474 . . . 4 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) ∧ 𝑧 ∈ ℝ+) β†’ (βˆƒπ‘€ ∈ ℝ+ βˆ€π‘‘ ∈ (𝑋 Γ— π‘Œ)((⟨𝐴, 𝐡⟩(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))𝑑) < 𝑀 β†’ ((πΉβ€˜βŸ¨π΄, 𝐡⟩)𝐸(πΉβ€˜π‘‘)) < 𝑧) ↔ βˆƒπ‘€ ∈ ℝ+ βˆ€π‘’ ∈ 𝑋 βˆ€π‘£ ∈ π‘Œ (((𝐴𝐢𝑒) < 𝑀 ∧ (𝐡𝐷𝑣) < 𝑀) β†’ ((𝐴𝐹𝐡)𝐸(𝑒𝐹𝑣)) < 𝑧)))
9291ralbidva 2473 . . 3 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) β†’ (βˆ€π‘§ ∈ ℝ+ βˆƒπ‘€ ∈ ℝ+ βˆ€π‘‘ ∈ (𝑋 Γ— π‘Œ)((⟨𝐴, 𝐡⟩(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))𝑑) < 𝑀 β†’ ((πΉβ€˜βŸ¨π΄, 𝐡⟩)𝐸(πΉβ€˜π‘‘)) < 𝑧) ↔ βˆ€π‘§ ∈ ℝ+ βˆƒπ‘€ ∈ ℝ+ βˆ€π‘’ ∈ 𝑋 βˆ€π‘£ ∈ π‘Œ (((𝐴𝐢𝑒) < 𝑀 ∧ (𝐡𝐷𝑣) < 𝑀) β†’ ((𝐴𝐹𝐡)𝐸(𝑒𝐹𝑣)) < 𝑧)))
9392anbi2d 464 . 2 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) β†’ ((𝐹:(𝑋 Γ— π‘Œ)βŸΆπ‘ ∧ βˆ€π‘§ ∈ ℝ+ βˆƒπ‘€ ∈ ℝ+ βˆ€π‘‘ ∈ (𝑋 Γ— π‘Œ)((⟨𝐴, 𝐡⟩(π‘Ÿ ∈ (𝑋 Γ— π‘Œ), 𝑠 ∈ (𝑋 Γ— π‘Œ) ↦ sup({((1st β€˜π‘Ÿ)𝐢(1st β€˜π‘ )), ((2nd β€˜π‘Ÿ)𝐷(2nd β€˜π‘ ))}, ℝ*, < ))𝑑) < 𝑀 β†’ ((πΉβ€˜βŸ¨π΄, 𝐡⟩)𝐸(πΉβ€˜π‘‘)) < 𝑧)) ↔ (𝐹:(𝑋 Γ— π‘Œ)βŸΆπ‘ ∧ βˆ€π‘§ ∈ ℝ+ βˆƒπ‘€ ∈ ℝ+ βˆ€π‘’ ∈ 𝑋 βˆ€π‘£ ∈ π‘Œ (((𝐴𝐢𝑒) < 𝑀 ∧ (𝐡𝐷𝑣) < 𝑀) β†’ ((𝐴𝐹𝐡)𝐸(𝑒𝐹𝑣)) < 𝑧))))
9414, 20, 933bitr3d 218 1 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝐸 ∈ (∞Metβ€˜π‘)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ)) β†’ (𝐹 ∈ (((𝐽 Γ—t 𝐾) CnP 𝐿)β€˜βŸ¨π΄, 𝐡⟩) ↔ (𝐹:(𝑋 Γ— π‘Œ)βŸΆπ‘ ∧ βˆ€π‘§ ∈ ℝ+ βˆƒπ‘€ ∈ ℝ+ βˆ€π‘’ ∈ 𝑋 βˆ€π‘£ ∈ π‘Œ (((𝐴𝐢𝑒) < 𝑀 ∧ (𝐡𝐷𝑣) < 𝑀) β†’ ((𝐴𝐹𝐡)𝐸(𝑒𝐹𝑣)) < 𝑧))))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∧ w3a 978   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  βˆƒwrex 2456  {cpr 3595  βŸ¨cop 3597   class class class wbr 4005   Γ— cxp 4626  βŸΆwf 5214  β€˜cfv 5218  (class class class)co 5877   ∈ cmpo 5879  1st c1st 6141  2nd c2nd 6142  supcsup 6983  β„*cxr 7993   < clt 7994  β„+crp 9655  βˆžMetcxmet 13479  MetOpencmopn 13484   CnP ccnp 13725   Γ—t ctx 13791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-map 6652  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-xneg 9774  df-xadd 9775  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-topgen 12714  df-psmet 13486  df-xmet 13487  df-bl 13489  df-mopn 13490  df-top 13537  df-topon 13550  df-bases 13582  df-cnp 13728  df-tx 13792
This theorem is referenced by:  txmetcn  14058  limccnp2cntop  14185
  Copyright terms: Public domain W3C validator