Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  txmetcnp GIF version

Theorem txmetcnp 12676
 Description: Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.) (Revised by Jim Kingdon, 22-Oct-2023.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpen‘𝐶)
metcn.4 𝐾 = (MetOpen‘𝐷)
txmetcnp.4 𝐿 = (MetOpen‘𝐸)
Assertion
Ref Expression
txmetcnp (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))))
Distinct variable groups:   𝑣,𝑢,𝑤,𝑧,𝐹   𝑢,𝐽,𝑣,𝑤,𝑧   𝑢,𝐾,𝑣,𝑤,𝑧   𝑢,𝑋,𝑣,𝑤,𝑧   𝑢,𝑌,𝑣,𝑤,𝑧   𝑢,𝑍,𝑣,𝑤,𝑧   𝑢,𝐴,𝑣,𝑤,𝑧   𝑢,𝐶,𝑣,𝑤,𝑧   𝑢,𝐷,𝑣,𝑤,𝑧   𝑢,𝐵,𝑣,𝑤,𝑧   𝑢,𝐸,𝑣,𝑤,𝑧   𝑤,𝐿,𝑧
Allowed substitution hints:   𝐿(𝑣,𝑢)

Proof of Theorem txmetcnp
Dummy variables 𝑡 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2137 . . . 4 (𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < )) = (𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))
2 simp1 981 . . . . 5 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → 𝐶 ∈ (∞Met‘𝑋))
32adantr 274 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐶 ∈ (∞Met‘𝑋))
4 simp2 982 . . . . 5 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → 𝐷 ∈ (∞Met‘𝑌))
54adantr 274 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐷 ∈ (∞Met‘𝑌))
61, 3, 5xmetxp 12665 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < )) ∈ (∞Met‘(𝑋 × 𝑌)))
7 simpl3 986 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐸 ∈ (∞Met‘𝑍))
8 simprl 520 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐴𝑋)
9 simprr 521 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐵𝑌)
108, 9opelxpd 4567 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
11 eqid 2137 . . . 4 (MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))) = (MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < )))
12 txmetcnp.4 . . . 4 𝐿 = (MetOpen‘𝐸)
1311, 12metcnp 12670 . . 3 (((𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < )) ∈ (∞Met‘(𝑋 × 𝑌)) ∧ 𝐸 ∈ (∞Met‘𝑍) ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌)) → (𝐹 ∈ (((MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑡 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) < 𝑧))))
146, 7, 10, 13syl3anc 1216 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑡 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) < 𝑧))))
15 metcn.2 . . . . . 6 𝐽 = (MetOpen‘𝐶)
16 metcn.4 . . . . . 6 𝐾 = (MetOpen‘𝐷)
171, 3, 5, 15, 16, 11xmettx 12668 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))) = (𝐽 ×t 𝐾))
1817oveq1d 5782 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → ((MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))) CnP 𝐿) = ((𝐽 ×t 𝐾) CnP 𝐿))
1918fveq1d 5416 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (((MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) = (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩))
2019eleq2d 2207 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ 𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩)))
21 oveq2 5775 . . . . . . . . 9 (𝑡 = ⟨𝑢, 𝑣⟩ → (⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) = (⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩))
2221breq1d 3934 . . . . . . . 8 (𝑡 = ⟨𝑢, 𝑣⟩ → ((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) < 𝑤 ↔ (⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) < 𝑤))
23 fveq2 5414 . . . . . . . . . 10 (𝑡 = ⟨𝑢, 𝑣⟩ → (𝐹𝑡) = (𝐹‘⟨𝑢, 𝑣⟩))
2423oveq2d 5783 . . . . . . . . 9 (𝑡 = ⟨𝑢, 𝑣⟩ → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) = ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)))
2524breq1d 3934 . . . . . . . 8 (𝑡 = ⟨𝑢, 𝑣⟩ → (((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) < 𝑧 ↔ ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)) < 𝑧))
2622, 25imbi12d 233 . . . . . . 7 (𝑡 = ⟨𝑢, 𝑣⟩ → (((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) < 𝑧) ↔ ((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)) < 𝑧)))
2726ralxp 4677 . . . . . 6 (∀𝑡 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) < 𝑧) ↔ ∀𝑢𝑋𝑣𝑌 ((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)) < 𝑧))
288ad4antr 485 . . . . . . . . . . . . . 14 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → 𝐴𝑋)
299ad4antr 485 . . . . . . . . . . . . . 14 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → 𝐵𝑌)
3028, 29opelxpd 4567 . . . . . . . . . . . . 13 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
31 simplr 519 . . . . . . . . . . . . . 14 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → 𝑢𝑋)
32 simpr 109 . . . . . . . . . . . . . 14 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → 𝑣𝑌)
3331, 32opelxpd 4567 . . . . . . . . . . . . 13 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → ⟨𝑢, 𝑣⟩ ∈ (𝑋 × 𝑌))
342ad5antr 487 . . . . . . . . . . . . . . . 16 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → 𝐶 ∈ (∞Met‘𝑋))
35 xmetf 12508 . . . . . . . . . . . . . . . 16 (𝐶 ∈ (∞Met‘𝑋) → 𝐶:(𝑋 × 𝑋)⟶ℝ*)
3634, 35syl 14 . . . . . . . . . . . . . . 15 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → 𝐶:(𝑋 × 𝑋)⟶ℝ*)
37 op1stg 6041 . . . . . . . . . . . . . . . . 17 ((𝐴𝑋𝐵𝑌) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
3828, 29, 37syl2anc 408 . . . . . . . . . . . . . . . 16 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
3938, 28eqeltrd 2214 . . . . . . . . . . . . . . 15 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (1st ‘⟨𝐴, 𝐵⟩) ∈ 𝑋)
40 op1stg 6041 . . . . . . . . . . . . . . . . 17 ((𝑢𝑋𝑣𝑌) → (1st ‘⟨𝑢, 𝑣⟩) = 𝑢)
4140adantll 467 . . . . . . . . . . . . . . . 16 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (1st ‘⟨𝑢, 𝑣⟩) = 𝑢)
4241, 31eqeltrd 2214 . . . . . . . . . . . . . . 15 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (1st ‘⟨𝑢, 𝑣⟩) ∈ 𝑋)
4336, 39, 42fovrnd 5908 . . . . . . . . . . . . . 14 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → ((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)) ∈ ℝ*)
444ad5antr 487 . . . . . . . . . . . . . . . 16 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → 𝐷 ∈ (∞Met‘𝑌))
45 xmetf 12508 . . . . . . . . . . . . . . . 16 (𝐷 ∈ (∞Met‘𝑌) → 𝐷:(𝑌 × 𝑌)⟶ℝ*)
4644, 45syl 14 . . . . . . . . . . . . . . 15 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → 𝐷:(𝑌 × 𝑌)⟶ℝ*)
47 op2ndg 6042 . . . . . . . . . . . . . . . . 17 ((𝐴𝑋𝐵𝑌) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
4828, 29, 47syl2anc 408 . . . . . . . . . . . . . . . 16 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
4948, 29eqeltrd 2214 . . . . . . . . . . . . . . 15 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (2nd ‘⟨𝐴, 𝐵⟩) ∈ 𝑌)
50 op2ndg 6042 . . . . . . . . . . . . . . . . 17 ((𝑢𝑋𝑣𝑌) → (2nd ‘⟨𝑢, 𝑣⟩) = 𝑣)
5150adantll 467 . . . . . . . . . . . . . . . 16 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (2nd ‘⟨𝑢, 𝑣⟩) = 𝑣)
5251, 32eqeltrd 2214 . . . . . . . . . . . . . . 15 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (2nd ‘⟨𝑢, 𝑣⟩) ∈ 𝑌)
5346, 49, 52fovrnd 5908 . . . . . . . . . . . . . 14 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩)) ∈ ℝ*)
54 xrmaxcl 11014 . . . . . . . . . . . . . 14 ((((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)) ∈ ℝ* ∧ ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩)) ∈ ℝ*) → sup({((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)), ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩))}, ℝ*, < ) ∈ ℝ*)
5543, 53, 54syl2anc 408 . . . . . . . . . . . . 13 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → sup({((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)), ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩))}, ℝ*, < ) ∈ ℝ*)
56 fveq2 5414 . . . . . . . . . . . . . . . . 17 (𝑟 = ⟨𝐴, 𝐵⟩ → (1st𝑟) = (1st ‘⟨𝐴, 𝐵⟩))
57 fveq2 5414 . . . . . . . . . . . . . . . . 17 (𝑠 = ⟨𝑢, 𝑣⟩ → (1st𝑠) = (1st ‘⟨𝑢, 𝑣⟩))
5856, 57oveqan12d 5786 . . . . . . . . . . . . . . . 16 ((𝑟 = ⟨𝐴, 𝐵⟩ ∧ 𝑠 = ⟨𝑢, 𝑣⟩) → ((1st𝑟)𝐶(1st𝑠)) = ((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)))
59 fveq2 5414 . . . . . . . . . . . . . . . . 17 (𝑟 = ⟨𝐴, 𝐵⟩ → (2nd𝑟) = (2nd ‘⟨𝐴, 𝐵⟩))
60 fveq2 5414 . . . . . . . . . . . . . . . . 17 (𝑠 = ⟨𝑢, 𝑣⟩ → (2nd𝑠) = (2nd ‘⟨𝑢, 𝑣⟩))
6159, 60oveqan12d 5786 . . . . . . . . . . . . . . . 16 ((𝑟 = ⟨𝐴, 𝐵⟩ ∧ 𝑠 = ⟨𝑢, 𝑣⟩) → ((2nd𝑟)𝐷(2nd𝑠)) = ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩)))
6258, 61preq12d 3603 . . . . . . . . . . . . . . 15 ((𝑟 = ⟨𝐴, 𝐵⟩ ∧ 𝑠 = ⟨𝑢, 𝑣⟩) → {((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))} = {((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)), ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩))})
6362supeq1d 6867 . . . . . . . . . . . . . 14 ((𝑟 = ⟨𝐴, 𝐵⟩ ∧ 𝑠 = ⟨𝑢, 𝑣⟩) → sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ) = sup({((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)), ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩))}, ℝ*, < ))
6463, 1ovmpoga 5893 . . . . . . . . . . . . 13 ((⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌) ∧ ⟨𝑢, 𝑣⟩ ∈ (𝑋 × 𝑌) ∧ sup({((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)), ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩))}, ℝ*, < ) ∈ ℝ*) → (⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) = sup({((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)), ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩))}, ℝ*, < ))
6530, 33, 55, 64syl3anc 1216 . . . . . . . . . . . 12 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) = sup({((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)), ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩))}, ℝ*, < ))
6638, 41oveq12d 5785 . . . . . . . . . . . . . 14 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → ((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)) = (𝐴𝐶𝑢))
6748, 51oveq12d 5785 . . . . . . . . . . . . . 14 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩)) = (𝐵𝐷𝑣))
6866, 67preq12d 3603 . . . . . . . . . . . . 13 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → {((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)), ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩))} = {(𝐴𝐶𝑢), (𝐵𝐷𝑣)})
6968supeq1d 6867 . . . . . . . . . . . 12 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → sup({((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)), ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩))}, ℝ*, < ) = sup({(𝐴𝐶𝑢), (𝐵𝐷𝑣)}, ℝ*, < ))
7065, 69eqtrd 2170 . . . . . . . . . . 11 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) = sup({(𝐴𝐶𝑢), (𝐵𝐷𝑣)}, ℝ*, < ))
7170breq1d 3934 . . . . . . . . . 10 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → ((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) < 𝑤 ↔ sup({(𝐴𝐶𝑢), (𝐵𝐷𝑣)}, ℝ*, < ) < 𝑤))
72 xmetcl 12510 . . . . . . . . . . . 12 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝑢𝑋) → (𝐴𝐶𝑢) ∈ ℝ*)
7334, 28, 31, 72syl3anc 1216 . . . . . . . . . . 11 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (𝐴𝐶𝑢) ∈ ℝ*)
74 xmetcl 12510 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑌) ∧ 𝐵𝑌𝑣𝑌) → (𝐵𝐷𝑣) ∈ ℝ*)
7544, 29, 32, 74syl3anc 1216 . . . . . . . . . . 11 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (𝐵𝐷𝑣) ∈ ℝ*)
76 rpxr 9442 . . . . . . . . . . . 12 (𝑤 ∈ ℝ+𝑤 ∈ ℝ*)
7776ad3antlr 484 . . . . . . . . . . 11 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → 𝑤 ∈ ℝ*)
78 xrmaxltsup 11020 . . . . . . . . . . 11 (((𝐴𝐶𝑢) ∈ ℝ* ∧ (𝐵𝐷𝑣) ∈ ℝ*𝑤 ∈ ℝ*) → (sup({(𝐴𝐶𝑢), (𝐵𝐷𝑣)}, ℝ*, < ) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤)))
7973, 75, 77, 78syl3anc 1216 . . . . . . . . . 10 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (sup({(𝐴𝐶𝑢), (𝐵𝐷𝑣)}, ℝ*, < ) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤)))
8071, 79bitrd 187 . . . . . . . . 9 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → ((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤)))
81 df-ov 5770 . . . . . . . . . . . . 13 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
82 df-ov 5770 . . . . . . . . . . . . 13 (𝑢𝐹𝑣) = (𝐹‘⟨𝑢, 𝑣⟩)
8381, 82oveq12i 5779 . . . . . . . . . . . 12 ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) = ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩))
8483breq1i 3931 . . . . . . . . . . 11 (((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧 ↔ ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)) < 𝑧)
8584bicomi 131 . . . . . . . . . 10 (((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)) < 𝑧 ↔ ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)
8685a1i 9 . . . . . . . . 9 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)) < 𝑧 ↔ ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))
8780, 86imbi12d 233 . . . . . . . 8 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)) < 𝑧) ↔ (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
8887ralbidva 2431 . . . . . . 7 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) → (∀𝑣𝑌 ((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)) < 𝑧) ↔ ∀𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
8988ralbidva 2431 . . . . . 6 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) → (∀𝑢𝑋𝑣𝑌 ((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)) < 𝑧) ↔ ∀𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
9027, 89syl5bb 191 . . . . 5 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) → (∀𝑡 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) < 𝑧) ↔ ∀𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
9190rexbidva 2432 . . . 4 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) → (∃𝑤 ∈ ℝ+𝑡 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) < 𝑧) ↔ ∃𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
9291ralbidva 2431 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑡 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) < 𝑧) ↔ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
9392anbi2d 459 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → ((𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑡 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) < 𝑧)) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))))
9414, 20, 933bitr3d 217 1 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 962   = wceq 1331   ∈ wcel 1480  ∀wral 2414  ∃wrex 2415  {cpr 3523  ⟨cop 3525   class class class wbr 3924   × cxp 4532  ⟶wf 5114  ‘cfv 5118  (class class class)co 5767   ∈ cmpo 5769  1st c1st 6029  2nd c2nd 6030  supcsup 6862  ℝ*cxr 7792   < clt 7793  ℝ+crp 9434  ∞Metcxmet 12138  MetOpencmopn 12143   CnP ccnp 12344   ×t ctx 12410 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733 This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-isom 5127  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-map 6537  df-sup 6864  df-inf 6865  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-xneg 9552  df-xadd 9553  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-topgen 12130  df-psmet 12145  df-xmet 12146  df-bl 12148  df-mopn 12149  df-top 12154  df-topon 12167  df-bases 12199  df-cnp 12347  df-tx 12411 This theorem is referenced by:  txmetcn  12677  limccnp2cntop  12804
 Copyright terms: Public domain W3C validator