ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txmetcnp GIF version

Theorem txmetcnp 15192
Description: Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.) (Revised by Jim Kingdon, 22-Oct-2023.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpen‘𝐶)
metcn.4 𝐾 = (MetOpen‘𝐷)
txmetcnp.4 𝐿 = (MetOpen‘𝐸)
Assertion
Ref Expression
txmetcnp (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))))
Distinct variable groups:   𝑣,𝑢,𝑤,𝑧,𝐹   𝑢,𝐽,𝑣,𝑤,𝑧   𝑢,𝐾,𝑣,𝑤,𝑧   𝑢,𝑋,𝑣,𝑤,𝑧   𝑢,𝑌,𝑣,𝑤,𝑧   𝑢,𝑍,𝑣,𝑤,𝑧   𝑢,𝐴,𝑣,𝑤,𝑧   𝑢,𝐶,𝑣,𝑤,𝑧   𝑢,𝐷,𝑣,𝑤,𝑧   𝑢,𝐵,𝑣,𝑤,𝑧   𝑢,𝐸,𝑣,𝑤,𝑧   𝑤,𝐿,𝑧
Allowed substitution hints:   𝐿(𝑣,𝑢)

Proof of Theorem txmetcnp
Dummy variables 𝑡 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . . 4 (𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < )) = (𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))
2 simp1 1021 . . . . 5 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → 𝐶 ∈ (∞Met‘𝑋))
32adantr 276 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐶 ∈ (∞Met‘𝑋))
4 simp2 1022 . . . . 5 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → 𝐷 ∈ (∞Met‘𝑌))
54adantr 276 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐷 ∈ (∞Met‘𝑌))
61, 3, 5xmetxp 15181 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < )) ∈ (∞Met‘(𝑋 × 𝑌)))
7 simpl3 1026 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐸 ∈ (∞Met‘𝑍))
8 simprl 529 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐴𝑋)
9 simprr 531 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐵𝑌)
108, 9opelxpd 4752 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
11 eqid 2229 . . . 4 (MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))) = (MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < )))
12 txmetcnp.4 . . . 4 𝐿 = (MetOpen‘𝐸)
1311, 12metcnp 15186 . . 3 (((𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < )) ∈ (∞Met‘(𝑋 × 𝑌)) ∧ 𝐸 ∈ (∞Met‘𝑍) ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌)) → (𝐹 ∈ (((MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑡 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) < 𝑧))))
146, 7, 10, 13syl3anc 1271 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑡 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) < 𝑧))))
15 metcn.2 . . . . . 6 𝐽 = (MetOpen‘𝐶)
16 metcn.4 . . . . . 6 𝐾 = (MetOpen‘𝐷)
171, 3, 5, 15, 16, 11xmettx 15184 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))) = (𝐽 ×t 𝐾))
1817oveq1d 6016 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → ((MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))) CnP 𝐿) = ((𝐽 ×t 𝐾) CnP 𝐿))
1918fveq1d 5629 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (((MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) = (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩))
2019eleq2d 2299 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ 𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩)))
21 oveq2 6009 . . . . . . . . 9 (𝑡 = ⟨𝑢, 𝑣⟩ → (⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) = (⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩))
2221breq1d 4093 . . . . . . . 8 (𝑡 = ⟨𝑢, 𝑣⟩ → ((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) < 𝑤 ↔ (⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) < 𝑤))
23 fveq2 5627 . . . . . . . . . 10 (𝑡 = ⟨𝑢, 𝑣⟩ → (𝐹𝑡) = (𝐹‘⟨𝑢, 𝑣⟩))
2423oveq2d 6017 . . . . . . . . 9 (𝑡 = ⟨𝑢, 𝑣⟩ → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) = ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)))
2524breq1d 4093 . . . . . . . 8 (𝑡 = ⟨𝑢, 𝑣⟩ → (((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) < 𝑧 ↔ ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)) < 𝑧))
2622, 25imbi12d 234 . . . . . . 7 (𝑡 = ⟨𝑢, 𝑣⟩ → (((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) < 𝑧) ↔ ((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)) < 𝑧)))
2726ralxp 4865 . . . . . 6 (∀𝑡 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) < 𝑧) ↔ ∀𝑢𝑋𝑣𝑌 ((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)) < 𝑧))
288ad4antr 494 . . . . . . . . . . . . . 14 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → 𝐴𝑋)
299ad4antr 494 . . . . . . . . . . . . . 14 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → 𝐵𝑌)
3028, 29opelxpd 4752 . . . . . . . . . . . . 13 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
31 simplr 528 . . . . . . . . . . . . . 14 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → 𝑢𝑋)
32 simpr 110 . . . . . . . . . . . . . 14 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → 𝑣𝑌)
3331, 32opelxpd 4752 . . . . . . . . . . . . 13 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → ⟨𝑢, 𝑣⟩ ∈ (𝑋 × 𝑌))
342ad5antr 496 . . . . . . . . . . . . . . . 16 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → 𝐶 ∈ (∞Met‘𝑋))
35 xmetf 15024 . . . . . . . . . . . . . . . 16 (𝐶 ∈ (∞Met‘𝑋) → 𝐶:(𝑋 × 𝑋)⟶ℝ*)
3634, 35syl 14 . . . . . . . . . . . . . . 15 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → 𝐶:(𝑋 × 𝑋)⟶ℝ*)
37 op1stg 6296 . . . . . . . . . . . . . . . . 17 ((𝐴𝑋𝐵𝑌) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
3828, 29, 37syl2anc 411 . . . . . . . . . . . . . . . 16 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
3938, 28eqeltrd 2306 . . . . . . . . . . . . . . 15 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (1st ‘⟨𝐴, 𝐵⟩) ∈ 𝑋)
40 op1stg 6296 . . . . . . . . . . . . . . . . 17 ((𝑢𝑋𝑣𝑌) → (1st ‘⟨𝑢, 𝑣⟩) = 𝑢)
4140adantll 476 . . . . . . . . . . . . . . . 16 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (1st ‘⟨𝑢, 𝑣⟩) = 𝑢)
4241, 31eqeltrd 2306 . . . . . . . . . . . . . . 15 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (1st ‘⟨𝑢, 𝑣⟩) ∈ 𝑋)
4336, 39, 42fovcdmd 6150 . . . . . . . . . . . . . 14 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → ((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)) ∈ ℝ*)
444ad5antr 496 . . . . . . . . . . . . . . . 16 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → 𝐷 ∈ (∞Met‘𝑌))
45 xmetf 15024 . . . . . . . . . . . . . . . 16 (𝐷 ∈ (∞Met‘𝑌) → 𝐷:(𝑌 × 𝑌)⟶ℝ*)
4644, 45syl 14 . . . . . . . . . . . . . . 15 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → 𝐷:(𝑌 × 𝑌)⟶ℝ*)
47 op2ndg 6297 . . . . . . . . . . . . . . . . 17 ((𝐴𝑋𝐵𝑌) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
4828, 29, 47syl2anc 411 . . . . . . . . . . . . . . . 16 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
4948, 29eqeltrd 2306 . . . . . . . . . . . . . . 15 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (2nd ‘⟨𝐴, 𝐵⟩) ∈ 𝑌)
50 op2ndg 6297 . . . . . . . . . . . . . . . . 17 ((𝑢𝑋𝑣𝑌) → (2nd ‘⟨𝑢, 𝑣⟩) = 𝑣)
5150adantll 476 . . . . . . . . . . . . . . . 16 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (2nd ‘⟨𝑢, 𝑣⟩) = 𝑣)
5251, 32eqeltrd 2306 . . . . . . . . . . . . . . 15 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (2nd ‘⟨𝑢, 𝑣⟩) ∈ 𝑌)
5346, 49, 52fovcdmd 6150 . . . . . . . . . . . . . 14 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩)) ∈ ℝ*)
54 xrmaxcl 11763 . . . . . . . . . . . . . 14 ((((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)) ∈ ℝ* ∧ ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩)) ∈ ℝ*) → sup({((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)), ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩))}, ℝ*, < ) ∈ ℝ*)
5543, 53, 54syl2anc 411 . . . . . . . . . . . . 13 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → sup({((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)), ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩))}, ℝ*, < ) ∈ ℝ*)
56 fveq2 5627 . . . . . . . . . . . . . . . . 17 (𝑟 = ⟨𝐴, 𝐵⟩ → (1st𝑟) = (1st ‘⟨𝐴, 𝐵⟩))
57 fveq2 5627 . . . . . . . . . . . . . . . . 17 (𝑠 = ⟨𝑢, 𝑣⟩ → (1st𝑠) = (1st ‘⟨𝑢, 𝑣⟩))
5856, 57oveqan12d 6020 . . . . . . . . . . . . . . . 16 ((𝑟 = ⟨𝐴, 𝐵⟩ ∧ 𝑠 = ⟨𝑢, 𝑣⟩) → ((1st𝑟)𝐶(1st𝑠)) = ((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)))
59 fveq2 5627 . . . . . . . . . . . . . . . . 17 (𝑟 = ⟨𝐴, 𝐵⟩ → (2nd𝑟) = (2nd ‘⟨𝐴, 𝐵⟩))
60 fveq2 5627 . . . . . . . . . . . . . . . . 17 (𝑠 = ⟨𝑢, 𝑣⟩ → (2nd𝑠) = (2nd ‘⟨𝑢, 𝑣⟩))
6159, 60oveqan12d 6020 . . . . . . . . . . . . . . . 16 ((𝑟 = ⟨𝐴, 𝐵⟩ ∧ 𝑠 = ⟨𝑢, 𝑣⟩) → ((2nd𝑟)𝐷(2nd𝑠)) = ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩)))
6258, 61preq12d 3751 . . . . . . . . . . . . . . 15 ((𝑟 = ⟨𝐴, 𝐵⟩ ∧ 𝑠 = ⟨𝑢, 𝑣⟩) → {((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))} = {((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)), ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩))})
6362supeq1d 7154 . . . . . . . . . . . . . 14 ((𝑟 = ⟨𝐴, 𝐵⟩ ∧ 𝑠 = ⟨𝑢, 𝑣⟩) → sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ) = sup({((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)), ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩))}, ℝ*, < ))
6463, 1ovmpoga 6134 . . . . . . . . . . . . 13 ((⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌) ∧ ⟨𝑢, 𝑣⟩ ∈ (𝑋 × 𝑌) ∧ sup({((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)), ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩))}, ℝ*, < ) ∈ ℝ*) → (⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) = sup({((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)), ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩))}, ℝ*, < ))
6530, 33, 55, 64syl3anc 1271 . . . . . . . . . . . 12 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) = sup({((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)), ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩))}, ℝ*, < ))
6638, 41oveq12d 6019 . . . . . . . . . . . . . 14 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → ((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)) = (𝐴𝐶𝑢))
6748, 51oveq12d 6019 . . . . . . . . . . . . . 14 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩)) = (𝐵𝐷𝑣))
6866, 67preq12d 3751 . . . . . . . . . . . . 13 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → {((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)), ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩))} = {(𝐴𝐶𝑢), (𝐵𝐷𝑣)})
6968supeq1d 7154 . . . . . . . . . . . 12 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → sup({((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)), ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩))}, ℝ*, < ) = sup({(𝐴𝐶𝑢), (𝐵𝐷𝑣)}, ℝ*, < ))
7065, 69eqtrd 2262 . . . . . . . . . . 11 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) = sup({(𝐴𝐶𝑢), (𝐵𝐷𝑣)}, ℝ*, < ))
7170breq1d 4093 . . . . . . . . . 10 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → ((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) < 𝑤 ↔ sup({(𝐴𝐶𝑢), (𝐵𝐷𝑣)}, ℝ*, < ) < 𝑤))
72 xmetcl 15026 . . . . . . . . . . . 12 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝑢𝑋) → (𝐴𝐶𝑢) ∈ ℝ*)
7334, 28, 31, 72syl3anc 1271 . . . . . . . . . . 11 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (𝐴𝐶𝑢) ∈ ℝ*)
74 xmetcl 15026 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑌) ∧ 𝐵𝑌𝑣𝑌) → (𝐵𝐷𝑣) ∈ ℝ*)
7544, 29, 32, 74syl3anc 1271 . . . . . . . . . . 11 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (𝐵𝐷𝑣) ∈ ℝ*)
76 rpxr 9857 . . . . . . . . . . . 12 (𝑤 ∈ ℝ+𝑤 ∈ ℝ*)
7776ad3antlr 493 . . . . . . . . . . 11 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → 𝑤 ∈ ℝ*)
78 xrmaxltsup 11769 . . . . . . . . . . 11 (((𝐴𝐶𝑢) ∈ ℝ* ∧ (𝐵𝐷𝑣) ∈ ℝ*𝑤 ∈ ℝ*) → (sup({(𝐴𝐶𝑢), (𝐵𝐷𝑣)}, ℝ*, < ) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤)))
7973, 75, 77, 78syl3anc 1271 . . . . . . . . . 10 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (sup({(𝐴𝐶𝑢), (𝐵𝐷𝑣)}, ℝ*, < ) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤)))
8071, 79bitrd 188 . . . . . . . . 9 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → ((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤)))
81 df-ov 6004 . . . . . . . . . . . . 13 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
82 df-ov 6004 . . . . . . . . . . . . 13 (𝑢𝐹𝑣) = (𝐹‘⟨𝑢, 𝑣⟩)
8381, 82oveq12i 6013 . . . . . . . . . . . 12 ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) = ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩))
8483breq1i 4090 . . . . . . . . . . 11 (((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧 ↔ ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)) < 𝑧)
8584bicomi 132 . . . . . . . . . 10 (((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)) < 𝑧 ↔ ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)
8685a1i 9 . . . . . . . . 9 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)) < 𝑧 ↔ ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))
8780, 86imbi12d 234 . . . . . . . 8 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)) < 𝑧) ↔ (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
8887ralbidva 2526 . . . . . . 7 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) → (∀𝑣𝑌 ((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)) < 𝑧) ↔ ∀𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
8988ralbidva 2526 . . . . . 6 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) → (∀𝑢𝑋𝑣𝑌 ((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)) < 𝑧) ↔ ∀𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
9027, 89bitrid 192 . . . . 5 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) → (∀𝑡 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) < 𝑧) ↔ ∀𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
9190rexbidva 2527 . . . 4 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) → (∃𝑤 ∈ ℝ+𝑡 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) < 𝑧) ↔ ∃𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
9291ralbidva 2526 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑡 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) < 𝑧) ↔ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
9392anbi2d 464 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → ((𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑡 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) < 𝑧)) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))))
9414, 20, 933bitr3d 218 1 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wral 2508  wrex 2509  {cpr 3667  cop 3669   class class class wbr 4083   × cxp 4717  wf 5314  cfv 5318  (class class class)co 6001  cmpo 6003  1st c1st 6284  2nd c2nd 6285  supcsup 7149  *cxr 8180   < clt 8181  +crp 9849  ∞Metcxmet 14500  MetOpencmopn 14505   CnP ccnp 14860   ×t ctx 14926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-map 6797  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-xneg 9968  df-xadd 9969  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-topgen 13293  df-psmet 14507  df-xmet 14508  df-bl 14510  df-mopn 14511  df-top 14672  df-topon 14685  df-bases 14717  df-cnp 14863  df-tx 14927
This theorem is referenced by:  txmetcn  15193  limccnp2cntop  15351
  Copyright terms: Public domain W3C validator