| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpsfval | GIF version | ||
| Description: The value of the function appearing in xpsval 13228. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| xpsff1o.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) |
| Ref | Expression |
|---|---|
| xpsfval | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐹𝑌) = {〈∅, 𝑋〉, 〈1o, 𝑌〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lt2o 6534 | . . . 4 ⊢ ∅ ∈ 2o | |
| 2 | simpl 109 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐴) | |
| 3 | opexg 4276 | . . . 4 ⊢ ((∅ ∈ 2o ∧ 𝑋 ∈ 𝐴) → 〈∅, 𝑋〉 ∈ V) | |
| 4 | 1, 2, 3 | sylancr 414 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 〈∅, 𝑋〉 ∈ V) |
| 5 | 1lt2o 6535 | . . . 4 ⊢ 1o ∈ 2o | |
| 6 | simpr 110 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 7 | opexg 4276 | . . . 4 ⊢ ((1o ∈ 2o ∧ 𝑌 ∈ 𝐵) → 〈1o, 𝑌〉 ∈ V) | |
| 8 | 5, 6, 7 | sylancr 414 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 〈1o, 𝑌〉 ∈ V) |
| 9 | prexg 4259 | . . 3 ⊢ ((〈∅, 𝑋〉 ∈ V ∧ 〈1o, 𝑌〉 ∈ V) → {〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V) | |
| 10 | 4, 8, 9 | syl2anc 411 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → {〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V) |
| 11 | simpl 109 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | |
| 12 | 11 | opeq2d 3828 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 〈∅, 𝑥〉 = 〈∅, 𝑋〉) |
| 13 | simpr 110 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
| 14 | 13 | opeq2d 3828 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 〈1o, 𝑦〉 = 〈1o, 𝑌〉) |
| 15 | 12, 14 | preq12d 3719 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → {〈∅, 𝑥〉, 〈1o, 𝑦〉} = {〈∅, 𝑋〉, 〈1o, 𝑌〉}) |
| 16 | xpsff1o.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | |
| 17 | 15, 16 | ovmpoga 6082 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ {〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V) → (𝑋𝐹𝑌) = {〈∅, 𝑋〉, 〈1o, 𝑌〉}) |
| 18 | 10, 17 | mpd3an3 1351 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐹𝑌) = {〈∅, 𝑋〉, 〈1o, 𝑌〉}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∅c0 3461 {cpr 3635 〈cop 3637 (class class class)co 5951 ∈ cmpo 5953 1oc1o 6502 2oc2o 6503 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-suc 4422 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-iota 5237 df-fun 5278 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1o 6509 df-2o 6510 |
| This theorem is referenced by: xpsff1o 13225 |
| Copyright terms: Public domain | W3C validator |