![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpsfval | GIF version |
Description: The value of the function appearing in xpsval 12938. (Contributed by Mario Carneiro, 15-Aug-2015.) |
Ref | Expression |
---|---|
xpsff1o.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) |
Ref | Expression |
---|---|
xpsfval | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐹𝑌) = {〈∅, 𝑋〉, 〈1o, 𝑌〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0lt2o 6496 | . . . 4 ⊢ ∅ ∈ 2o | |
2 | simpl 109 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐴) | |
3 | opexg 4258 | . . . 4 ⊢ ((∅ ∈ 2o ∧ 𝑋 ∈ 𝐴) → 〈∅, 𝑋〉 ∈ V) | |
4 | 1, 2, 3 | sylancr 414 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 〈∅, 𝑋〉 ∈ V) |
5 | 1lt2o 6497 | . . . 4 ⊢ 1o ∈ 2o | |
6 | simpr 110 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
7 | opexg 4258 | . . . 4 ⊢ ((1o ∈ 2o ∧ 𝑌 ∈ 𝐵) → 〈1o, 𝑌〉 ∈ V) | |
8 | 5, 6, 7 | sylancr 414 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 〈1o, 𝑌〉 ∈ V) |
9 | prexg 4241 | . . 3 ⊢ ((〈∅, 𝑋〉 ∈ V ∧ 〈1o, 𝑌〉 ∈ V) → {〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V) | |
10 | 4, 8, 9 | syl2anc 411 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → {〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V) |
11 | simpl 109 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | |
12 | 11 | opeq2d 3812 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 〈∅, 𝑥〉 = 〈∅, 𝑋〉) |
13 | simpr 110 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
14 | 13 | opeq2d 3812 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 〈1o, 𝑦〉 = 〈1o, 𝑌〉) |
15 | 12, 14 | preq12d 3704 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → {〈∅, 𝑥〉, 〈1o, 𝑦〉} = {〈∅, 𝑋〉, 〈1o, 𝑌〉}) |
16 | xpsff1o.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | |
17 | 15, 16 | ovmpoga 6049 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ {〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V) → (𝑋𝐹𝑌) = {〈∅, 𝑋〉, 〈1o, 𝑌〉}) |
18 | 10, 17 | mpd3an3 1349 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐹𝑌) = {〈∅, 𝑋〉, 〈1o, 𝑌〉}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∅c0 3447 {cpr 3620 〈cop 3622 (class class class)co 5919 ∈ cmpo 5921 1oc1o 6464 2oc2o 6465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1o 6471 df-2o 6472 |
This theorem is referenced by: xpsff1o 12935 |
Copyright terms: Public domain | W3C validator |