![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpsfval | GIF version |
Description: The value of the function appearing in xpsval 12776. (Contributed by Mario Carneiro, 15-Aug-2015.) |
Ref | Expression |
---|---|
xpsff1o.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) |
Ref | Expression |
---|---|
xpsfval | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐹𝑌) = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0lt2o 6444 | . . . 4 ⊢ ∅ ∈ 2o | |
2 | simpl 109 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐴) | |
3 | opexg 4230 | . . . 4 ⊢ ((∅ ∈ 2o ∧ 𝑋 ∈ 𝐴) → ⟨∅, 𝑋⟩ ∈ V) | |
4 | 1, 2, 3 | sylancr 414 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → ⟨∅, 𝑋⟩ ∈ V) |
5 | 1lt2o 6445 | . . . 4 ⊢ 1o ∈ 2o | |
6 | simpr 110 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
7 | opexg 4230 | . . . 4 ⊢ ((1o ∈ 2o ∧ 𝑌 ∈ 𝐵) → ⟨1o, 𝑌⟩ ∈ V) | |
8 | 5, 6, 7 | sylancr 414 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → ⟨1o, 𝑌⟩ ∈ V) |
9 | prexg 4213 | . . 3 ⊢ ((⟨∅, 𝑋⟩ ∈ V ∧ ⟨1o, 𝑌⟩ ∈ V) → {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V) | |
10 | 4, 8, 9 | syl2anc 411 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V) |
11 | simpl 109 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | |
12 | 11 | opeq2d 3787 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ⟨∅, 𝑥⟩ = ⟨∅, 𝑋⟩) |
13 | simpr 110 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
14 | 13 | opeq2d 3787 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ⟨1o, 𝑦⟩ = ⟨1o, 𝑌⟩) |
15 | 12, 14 | preq12d 3679 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}) |
16 | xpsff1o.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) | |
17 | 15, 16 | ovmpoga 6006 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V) → (𝑋𝐹𝑌) = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}) |
18 | 10, 17 | mpd3an3 1338 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐹𝑌) = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 Vcvv 2739 ∅c0 3424 {cpr 3595 ⟨cop 3597 (class class class)co 5877 ∈ cmpo 5879 1oc1o 6412 2oc2o 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1o 6419 df-2o 6420 |
This theorem is referenced by: xpsff1o 12773 |
Copyright terms: Public domain | W3C validator |