| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpsfval | GIF version | ||
| Description: The value of the function appearing in xpsval 13054. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| xpsff1o.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) |
| Ref | Expression |
|---|---|
| xpsfval | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐹𝑌) = {〈∅, 𝑋〉, 〈1o, 𝑌〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lt2o 6508 | . . . 4 ⊢ ∅ ∈ 2o | |
| 2 | simpl 109 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐴) | |
| 3 | opexg 4262 | . . . 4 ⊢ ((∅ ∈ 2o ∧ 𝑋 ∈ 𝐴) → 〈∅, 𝑋〉 ∈ V) | |
| 4 | 1, 2, 3 | sylancr 414 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 〈∅, 𝑋〉 ∈ V) |
| 5 | 1lt2o 6509 | . . . 4 ⊢ 1o ∈ 2o | |
| 6 | simpr 110 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 7 | opexg 4262 | . . . 4 ⊢ ((1o ∈ 2o ∧ 𝑌 ∈ 𝐵) → 〈1o, 𝑌〉 ∈ V) | |
| 8 | 5, 6, 7 | sylancr 414 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 〈1o, 𝑌〉 ∈ V) |
| 9 | prexg 4245 | . . 3 ⊢ ((〈∅, 𝑋〉 ∈ V ∧ 〈1o, 𝑌〉 ∈ V) → {〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V) | |
| 10 | 4, 8, 9 | syl2anc 411 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → {〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V) |
| 11 | simpl 109 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | |
| 12 | 11 | opeq2d 3816 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 〈∅, 𝑥〉 = 〈∅, 𝑋〉) |
| 13 | simpr 110 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
| 14 | 13 | opeq2d 3816 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 〈1o, 𝑦〉 = 〈1o, 𝑌〉) |
| 15 | 12, 14 | preq12d 3708 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → {〈∅, 𝑥〉, 〈1o, 𝑦〉} = {〈∅, 𝑋〉, 〈1o, 𝑌〉}) |
| 16 | xpsff1o.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | |
| 17 | 15, 16 | ovmpoga 6056 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ {〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V) → (𝑋𝐹𝑌) = {〈∅, 𝑋〉, 〈1o, 𝑌〉}) |
| 18 | 10, 17 | mpd3an3 1349 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐹𝑌) = {〈∅, 𝑋〉, 〈1o, 𝑌〉}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∅c0 3451 {cpr 3624 〈cop 3626 (class class class)co 5925 ∈ cmpo 5927 1oc1o 6476 2oc2o 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1o 6483 df-2o 6484 |
| This theorem is referenced by: xpsff1o 13051 |
| Copyright terms: Public domain | W3C validator |