ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsfval GIF version

Theorem xpsfval 13347
Description: The value of the function appearing in xpsval 13351. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypothesis
Ref Expression
xpsff1o.f 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
Assertion
Ref Expression
xpsfval ((𝑋𝐴𝑌𝐵) → (𝑋𝐹𝑌) = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩})
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem xpsfval
StepHypRef Expression
1 0lt2o 6557 . . . 4 ∅ ∈ 2o
2 simpl 109 . . . 4 ((𝑋𝐴𝑌𝐵) → 𝑋𝐴)
3 opexg 4293 . . . 4 ((∅ ∈ 2o𝑋𝐴) → ⟨∅, 𝑋⟩ ∈ V)
41, 2, 3sylancr 414 . . 3 ((𝑋𝐴𝑌𝐵) → ⟨∅, 𝑋⟩ ∈ V)
5 1lt2o 6558 . . . 4 1o ∈ 2o
6 simpr 110 . . . 4 ((𝑋𝐴𝑌𝐵) → 𝑌𝐵)
7 opexg 4293 . . . 4 ((1o ∈ 2o𝑌𝐵) → ⟨1o, 𝑌⟩ ∈ V)
85, 6, 7sylancr 414 . . 3 ((𝑋𝐴𝑌𝐵) → ⟨1o, 𝑌⟩ ∈ V)
9 prexg 4274 . . 3 ((⟨∅, 𝑋⟩ ∈ V ∧ ⟨1o, 𝑌⟩ ∈ V) → {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V)
104, 8, 9syl2anc 411 . 2 ((𝑋𝐴𝑌𝐵) → {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V)
11 simpl 109 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
1211opeq2d 3843 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → ⟨∅, 𝑥⟩ = ⟨∅, 𝑋⟩)
13 simpr 110 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
1413opeq2d 3843 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → ⟨1o, 𝑦⟩ = ⟨1o, 𝑌⟩)
1512, 14preq12d 3731 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩})
16 xpsff1o.f . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
1715, 16ovmpoga 6105 . 2 ((𝑋𝐴𝑌𝐵 ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V) → (𝑋𝐹𝑌) = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩})
1810, 17mpd3an3 1353 1 ((𝑋𝐴𝑌𝐵) → (𝑋𝐹𝑌) = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  Vcvv 2779  c0 3471  {cpr 3647  cop 3649  (class class class)co 5974  cmpo 5976  1oc1o 6525  2oc2o 6526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-suc 4439  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-iota 5254  df-fun 5296  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1o 6532  df-2o 6533
This theorem is referenced by:  xpsff1o  13348
  Copyright terms: Public domain W3C validator