| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpsfval | GIF version | ||
| Description: The value of the function appearing in xpsval 13351. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| xpsff1o.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) |
| Ref | Expression |
|---|---|
| xpsfval | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐹𝑌) = {〈∅, 𝑋〉, 〈1o, 𝑌〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lt2o 6557 | . . . 4 ⊢ ∅ ∈ 2o | |
| 2 | simpl 109 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐴) | |
| 3 | opexg 4293 | . . . 4 ⊢ ((∅ ∈ 2o ∧ 𝑋 ∈ 𝐴) → 〈∅, 𝑋〉 ∈ V) | |
| 4 | 1, 2, 3 | sylancr 414 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 〈∅, 𝑋〉 ∈ V) |
| 5 | 1lt2o 6558 | . . . 4 ⊢ 1o ∈ 2o | |
| 6 | simpr 110 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 7 | opexg 4293 | . . . 4 ⊢ ((1o ∈ 2o ∧ 𝑌 ∈ 𝐵) → 〈1o, 𝑌〉 ∈ V) | |
| 8 | 5, 6, 7 | sylancr 414 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 〈1o, 𝑌〉 ∈ V) |
| 9 | prexg 4274 | . . 3 ⊢ ((〈∅, 𝑋〉 ∈ V ∧ 〈1o, 𝑌〉 ∈ V) → {〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V) | |
| 10 | 4, 8, 9 | syl2anc 411 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → {〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V) |
| 11 | simpl 109 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | |
| 12 | 11 | opeq2d 3843 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 〈∅, 𝑥〉 = 〈∅, 𝑋〉) |
| 13 | simpr 110 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
| 14 | 13 | opeq2d 3843 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 〈1o, 𝑦〉 = 〈1o, 𝑌〉) |
| 15 | 12, 14 | preq12d 3731 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → {〈∅, 𝑥〉, 〈1o, 𝑦〉} = {〈∅, 𝑋〉, 〈1o, 𝑌〉}) |
| 16 | xpsff1o.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | |
| 17 | 15, 16 | ovmpoga 6105 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ {〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V) → (𝑋𝐹𝑌) = {〈∅, 𝑋〉, 〈1o, 𝑌〉}) |
| 18 | 10, 17 | mpd3an3 1353 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐹𝑌) = {〈∅, 𝑋〉, 〈1o, 𝑌〉}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 Vcvv 2779 ∅c0 3471 {cpr 3647 〈cop 3649 (class class class)co 5974 ∈ cmpo 5976 1oc1o 6525 2oc2o 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-iota 5254 df-fun 5296 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1o 6532 df-2o 6533 |
| This theorem is referenced by: xpsff1o 13348 |
| Copyright terms: Public domain | W3C validator |