ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsfval GIF version

Theorem xpsfval 12772
Description: The value of the function appearing in xpsval 12776. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypothesis
Ref Expression
xpsff1o.f 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
Assertion
Ref Expression
xpsfval ((𝑋𝐴𝑌𝐵) → (𝑋𝐹𝑌) = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩})
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem xpsfval
StepHypRef Expression
1 0lt2o 6444 . . . 4 ∅ ∈ 2o
2 simpl 109 . . . 4 ((𝑋𝐴𝑌𝐵) → 𝑋𝐴)
3 opexg 4230 . . . 4 ((∅ ∈ 2o𝑋𝐴) → ⟨∅, 𝑋⟩ ∈ V)
41, 2, 3sylancr 414 . . 3 ((𝑋𝐴𝑌𝐵) → ⟨∅, 𝑋⟩ ∈ V)
5 1lt2o 6445 . . . 4 1o ∈ 2o
6 simpr 110 . . . 4 ((𝑋𝐴𝑌𝐵) → 𝑌𝐵)
7 opexg 4230 . . . 4 ((1o ∈ 2o𝑌𝐵) → ⟨1o, 𝑌⟩ ∈ V)
85, 6, 7sylancr 414 . . 3 ((𝑋𝐴𝑌𝐵) → ⟨1o, 𝑌⟩ ∈ V)
9 prexg 4213 . . 3 ((⟨∅, 𝑋⟩ ∈ V ∧ ⟨1o, 𝑌⟩ ∈ V) → {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V)
104, 8, 9syl2anc 411 . 2 ((𝑋𝐴𝑌𝐵) → {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V)
11 simpl 109 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
1211opeq2d 3787 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → ⟨∅, 𝑥⟩ = ⟨∅, 𝑋⟩)
13 simpr 110 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
1413opeq2d 3787 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → ⟨1o, 𝑦⟩ = ⟨1o, 𝑌⟩)
1512, 14preq12d 3679 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩})
16 xpsff1o.f . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
1715, 16ovmpoga 6006 . 2 ((𝑋𝐴𝑌𝐵 ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V) → (𝑋𝐹𝑌) = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩})
1810, 17mpd3an3 1338 1 ((𝑋𝐴𝑌𝐵) → (𝑋𝐹𝑌) = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  Vcvv 2739  c0 3424  {cpr 3595  cop 3597  (class class class)co 5877  cmpo 5879  1oc1o 6412  2oc2o 6413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1o 6419  df-2o 6420
This theorem is referenced by:  xpsff1o  12773
  Copyright terms: Public domain W3C validator