ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsfval GIF version

Theorem xpsfval 13389
Description: The value of the function appearing in xpsval 13393. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypothesis
Ref Expression
xpsff1o.f 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
Assertion
Ref Expression
xpsfval ((𝑋𝐴𝑌𝐵) → (𝑋𝐹𝑌) = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩})
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem xpsfval
StepHypRef Expression
1 0lt2o 6595 . . . 4 ∅ ∈ 2o
2 simpl 109 . . . 4 ((𝑋𝐴𝑌𝐵) → 𝑋𝐴)
3 opexg 4314 . . . 4 ((∅ ∈ 2o𝑋𝐴) → ⟨∅, 𝑋⟩ ∈ V)
41, 2, 3sylancr 414 . . 3 ((𝑋𝐴𝑌𝐵) → ⟨∅, 𝑋⟩ ∈ V)
5 1lt2o 6596 . . . 4 1o ∈ 2o
6 simpr 110 . . . 4 ((𝑋𝐴𝑌𝐵) → 𝑌𝐵)
7 opexg 4314 . . . 4 ((1o ∈ 2o𝑌𝐵) → ⟨1o, 𝑌⟩ ∈ V)
85, 6, 7sylancr 414 . . 3 ((𝑋𝐴𝑌𝐵) → ⟨1o, 𝑌⟩ ∈ V)
9 prexg 4295 . . 3 ((⟨∅, 𝑋⟩ ∈ V ∧ ⟨1o, 𝑌⟩ ∈ V) → {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V)
104, 8, 9syl2anc 411 . 2 ((𝑋𝐴𝑌𝐵) → {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V)
11 simpl 109 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
1211opeq2d 3864 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → ⟨∅, 𝑥⟩ = ⟨∅, 𝑋⟩)
13 simpr 110 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
1413opeq2d 3864 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → ⟨1o, 𝑦⟩ = ⟨1o, 𝑌⟩)
1512, 14preq12d 3751 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩})
16 xpsff1o.f . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
1715, 16ovmpoga 6140 . 2 ((𝑋𝐴𝑌𝐵 ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V) → (𝑋𝐹𝑌) = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩})
1810, 17mpd3an3 1372 1 ((𝑋𝐴𝑌𝐵) → (𝑋𝐹𝑌) = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  c0 3491  {cpr 3667  cop 3669  (class class class)co 6007  cmpo 6009  1oc1o 6561  2oc2o 6562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1o 6568  df-2o 6569
This theorem is referenced by:  xpsff1o  13390
  Copyright terms: Public domain W3C validator