ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsfval GIF version

Theorem xpsfval 13224
Description: The value of the function appearing in xpsval 13228. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypothesis
Ref Expression
xpsff1o.f 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
Assertion
Ref Expression
xpsfval ((𝑋𝐴𝑌𝐵) → (𝑋𝐹𝑌) = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩})
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem xpsfval
StepHypRef Expression
1 0lt2o 6534 . . . 4 ∅ ∈ 2o
2 simpl 109 . . . 4 ((𝑋𝐴𝑌𝐵) → 𝑋𝐴)
3 opexg 4276 . . . 4 ((∅ ∈ 2o𝑋𝐴) → ⟨∅, 𝑋⟩ ∈ V)
41, 2, 3sylancr 414 . . 3 ((𝑋𝐴𝑌𝐵) → ⟨∅, 𝑋⟩ ∈ V)
5 1lt2o 6535 . . . 4 1o ∈ 2o
6 simpr 110 . . . 4 ((𝑋𝐴𝑌𝐵) → 𝑌𝐵)
7 opexg 4276 . . . 4 ((1o ∈ 2o𝑌𝐵) → ⟨1o, 𝑌⟩ ∈ V)
85, 6, 7sylancr 414 . . 3 ((𝑋𝐴𝑌𝐵) → ⟨1o, 𝑌⟩ ∈ V)
9 prexg 4259 . . 3 ((⟨∅, 𝑋⟩ ∈ V ∧ ⟨1o, 𝑌⟩ ∈ V) → {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V)
104, 8, 9syl2anc 411 . 2 ((𝑋𝐴𝑌𝐵) → {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V)
11 simpl 109 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
1211opeq2d 3828 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → ⟨∅, 𝑥⟩ = ⟨∅, 𝑋⟩)
13 simpr 110 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
1413opeq2d 3828 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → ⟨1o, 𝑦⟩ = ⟨1o, 𝑌⟩)
1512, 14preq12d 3719 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩})
16 xpsff1o.f . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
1715, 16ovmpoga 6082 . 2 ((𝑋𝐴𝑌𝐵 ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V) → (𝑋𝐹𝑌) = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩})
1810, 17mpd3an3 1351 1 ((𝑋𝐴𝑌𝐵) → (𝑋𝐹𝑌) = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  Vcvv 2773  c0 3461  {cpr 3635  cop 3637  (class class class)co 5951  cmpo 5953  1oc1o 6502  2oc2o 6503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3000  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-iota 5237  df-fun 5278  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1o 6509  df-2o 6510
This theorem is referenced by:  xpsff1o  13225
  Copyright terms: Public domain W3C validator