ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsfval GIF version

Theorem xpsfval 12934
Description: The value of the function appearing in xpsval 12938. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypothesis
Ref Expression
xpsff1o.f 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
Assertion
Ref Expression
xpsfval ((𝑋𝐴𝑌𝐵) → (𝑋𝐹𝑌) = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩})
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem xpsfval
StepHypRef Expression
1 0lt2o 6496 . . . 4 ∅ ∈ 2o
2 simpl 109 . . . 4 ((𝑋𝐴𝑌𝐵) → 𝑋𝐴)
3 opexg 4258 . . . 4 ((∅ ∈ 2o𝑋𝐴) → ⟨∅, 𝑋⟩ ∈ V)
41, 2, 3sylancr 414 . . 3 ((𝑋𝐴𝑌𝐵) → ⟨∅, 𝑋⟩ ∈ V)
5 1lt2o 6497 . . . 4 1o ∈ 2o
6 simpr 110 . . . 4 ((𝑋𝐴𝑌𝐵) → 𝑌𝐵)
7 opexg 4258 . . . 4 ((1o ∈ 2o𝑌𝐵) → ⟨1o, 𝑌⟩ ∈ V)
85, 6, 7sylancr 414 . . 3 ((𝑋𝐴𝑌𝐵) → ⟨1o, 𝑌⟩ ∈ V)
9 prexg 4241 . . 3 ((⟨∅, 𝑋⟩ ∈ V ∧ ⟨1o, 𝑌⟩ ∈ V) → {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V)
104, 8, 9syl2anc 411 . 2 ((𝑋𝐴𝑌𝐵) → {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V)
11 simpl 109 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
1211opeq2d 3812 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → ⟨∅, 𝑥⟩ = ⟨∅, 𝑋⟩)
13 simpr 110 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
1413opeq2d 3812 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → ⟨1o, 𝑦⟩ = ⟨1o, 𝑌⟩)
1512, 14preq12d 3704 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩})
16 xpsff1o.f . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
1715, 16ovmpoga 6049 . 2 ((𝑋𝐴𝑌𝐵 ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V) → (𝑋𝐹𝑌) = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩})
1810, 17mpd3an3 1349 1 ((𝑋𝐴𝑌𝐵) → (𝑋𝐹𝑌) = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  c0 3447  {cpr 3620  cop 3622  (class class class)co 5919  cmpo 5921  1oc1o 6464  2oc2o 6465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1o 6471  df-2o 6472
This theorem is referenced by:  xpsff1o  12935
  Copyright terms: Public domain W3C validator