![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sn0topon | GIF version |
Description: The singleton of the empty set is a topology on the empty set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
sn0topon | ⊢ {∅} ∈ (TopOn‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw0 3753 | . 2 ⊢ 𝒫 ∅ = {∅} | |
2 | 0ex 4144 | . . 3 ⊢ ∅ ∈ V | |
3 | distopon 13970 | . . 3 ⊢ (∅ ∈ V → 𝒫 ∅ ∈ (TopOn‘∅)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ 𝒫 ∅ ∈ (TopOn‘∅) |
5 | 1, 4 | eqeltrri 2262 | 1 ⊢ {∅} ∈ (TopOn‘∅) |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2159 Vcvv 2751 ∅c0 3436 𝒫 cpw 3589 {csn 3606 ‘cfv 5230 TopOnctopon 13893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2161 ax-14 2162 ax-ext 2170 ax-sep 4135 ax-nul 4143 ax-pow 4188 ax-pr 4223 ax-un 4447 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ral 2472 df-rex 2473 df-rab 2476 df-v 2753 df-sbc 2977 df-dif 3145 df-un 3147 df-in 3149 df-ss 3156 df-nul 3437 df-pw 3591 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-br 4018 df-opab 4079 df-mpt 4080 df-id 4307 df-xp 4646 df-rel 4647 df-cnv 4648 df-co 4649 df-dm 4650 df-iota 5192 df-fun 5232 df-fv 5238 df-top 13881 df-topon 13894 |
This theorem is referenced by: sn0top 13972 |
Copyright terms: Public domain | W3C validator |