![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sn0cld | GIF version |
Description: The closed sets of the topology {∅}. (Contributed by FL, 5-Jan-2009.) |
Ref | Expression |
---|---|
sn0cld | ⊢ (Clsd‘{∅}) = {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4013 | . . 3 ⊢ ∅ ∈ V | |
2 | discld 12142 | . . 3 ⊢ (∅ ∈ V → (Clsd‘𝒫 ∅) = 𝒫 ∅) | |
3 | 1, 2 | ax-mp 7 | . 2 ⊢ (Clsd‘𝒫 ∅) = 𝒫 ∅ |
4 | pw0 3631 | . . 3 ⊢ 𝒫 ∅ = {∅} | |
5 | 4 | fveq2i 5376 | . 2 ⊢ (Clsd‘𝒫 ∅) = (Clsd‘{∅}) |
6 | 3, 5, 4 | 3eqtr3i 2141 | 1 ⊢ (Clsd‘{∅}) = {∅} |
Colors of variables: wff set class |
Syntax hints: = wceq 1312 ∈ wcel 1461 Vcvv 2655 ∅c0 3327 𝒫 cpw 3474 {csn 3491 ‘cfv 5079 Clsdccld 12098 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-nul 4012 ax-pow 4056 ax-pr 4089 ax-un 4313 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-rex 2394 df-rab 2397 df-v 2657 df-sbc 2877 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-nul 3328 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-br 3894 df-opab 3948 df-mpt 3949 df-id 4173 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-iota 5044 df-fun 5081 df-fv 5087 df-top 12002 df-cld 12101 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |