ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sn0cld GIF version

Theorem sn0cld 12345
Description: The closed sets of the topology {∅}. (Contributed by FL, 5-Jan-2009.)
Assertion
Ref Expression
sn0cld (Clsd‘{∅}) = {∅}

Proof of Theorem sn0cld
StepHypRef Expression
1 0ex 4063 . . 3 ∅ ∈ V
2 discld 12344 . . 3 (∅ ∈ V → (Clsd‘𝒫 ∅) = 𝒫 ∅)
31, 2ax-mp 5 . 2 (Clsd‘𝒫 ∅) = 𝒫 ∅
4 pw0 3675 . . 3 𝒫 ∅ = {∅}
54fveq2i 5432 . 2 (Clsd‘𝒫 ∅) = (Clsd‘{∅})
63, 5, 43eqtr3i 2169 1 (Clsd‘{∅}) = {∅}
Colors of variables: wff set class
Syntax hints:   = wceq 1332  wcel 1481  Vcvv 2689  c0 3368  𝒫 cpw 3515  {csn 3532  cfv 5131  Clsdccld 12300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-top 12204  df-cld 12303
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator