| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sn0cld | GIF version | ||
| Description: The closed sets of the topology {∅}. (Contributed by FL, 5-Jan-2009.) |
| Ref | Expression |
|---|---|
| sn0cld | ⊢ (Clsd‘{∅}) = {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4160 | . . 3 ⊢ ∅ ∈ V | |
| 2 | discld 14372 | . . 3 ⊢ (∅ ∈ V → (Clsd‘𝒫 ∅) = 𝒫 ∅) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (Clsd‘𝒫 ∅) = 𝒫 ∅ |
| 4 | pw0 3769 | . . 3 ⊢ 𝒫 ∅ = {∅} | |
| 5 | 4 | fveq2i 5561 | . 2 ⊢ (Clsd‘𝒫 ∅) = (Clsd‘{∅}) |
| 6 | 3, 5, 4 | 3eqtr3i 2225 | 1 ⊢ (Clsd‘{∅}) = {∅} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∅c0 3450 𝒫 cpw 3605 {csn 3622 ‘cfv 5258 Clsdccld 14328 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-top 14234 df-cld 14331 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |