| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sspwb | GIF version | ||
| Description: Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.) |
| Ref | Expression |
|---|---|
| sspwb | ⊢ (𝐴 ⊆ 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3208 | . . . . 5 ⊢ (𝑥 ⊆ 𝐴 → (𝐴 ⊆ 𝐵 → 𝑥 ⊆ 𝐵)) | |
| 2 | 1 | com12 30 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵)) |
| 3 | vex 2779 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 4 | 3 | elpw 3632 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
| 5 | 3 | elpw 3632 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) |
| 6 | 2, 4, 5 | 3imtr4g 205 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵)) |
| 7 | 6 | ssrdv 3207 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| 8 | ssel 3195 | . . . 4 ⊢ (𝒫 𝐴 ⊆ 𝒫 𝐵 → ({𝑥} ∈ 𝒫 𝐴 → {𝑥} ∈ 𝒫 𝐵)) | |
| 9 | 3 | snex 4245 | . . . . . 6 ⊢ {𝑥} ∈ V |
| 10 | 9 | elpw 3632 | . . . . 5 ⊢ ({𝑥} ∈ 𝒫 𝐴 ↔ {𝑥} ⊆ 𝐴) |
| 11 | 3 | snss 3779 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↔ {𝑥} ⊆ 𝐴) |
| 12 | 10, 11 | bitr4i 187 | . . . 4 ⊢ ({𝑥} ∈ 𝒫 𝐴 ↔ 𝑥 ∈ 𝐴) |
| 13 | 9 | elpw 3632 | . . . . 5 ⊢ ({𝑥} ∈ 𝒫 𝐵 ↔ {𝑥} ⊆ 𝐵) |
| 14 | 3 | snss 3779 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 ↔ {𝑥} ⊆ 𝐵) |
| 15 | 13, 14 | bitr4i 187 | . . . 4 ⊢ ({𝑥} ∈ 𝒫 𝐵 ↔ 𝑥 ∈ 𝐵) |
| 16 | 8, 12, 15 | 3imtr3g 204 | . . 3 ⊢ (𝒫 𝐴 ⊆ 𝒫 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 17 | 16 | ssrdv 3207 | . 2 ⊢ (𝒫 𝐴 ⊆ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) |
| 18 | 7, 17 | impbii 126 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2178 ⊆ wss 3174 𝒫 cpw 3626 {csn 3643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 |
| This theorem is referenced by: pwel 4280 ssextss 4282 pweqb 4285 fiss 7105 pw1on 7372 ntrss 14706 |
| Copyright terms: Public domain | W3C validator |