ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sspwb GIF version

Theorem sspwb 4278
Description: Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.)
Assertion
Ref Expression
sspwb (𝐴𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵)

Proof of Theorem sspwb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sstr2 3208 . . . . 5 (𝑥𝐴 → (𝐴𝐵𝑥𝐵))
21com12 30 . . . 4 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
3 vex 2779 . . . . 5 𝑥 ∈ V
43elpw 3632 . . . 4 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
53elpw 3632 . . . 4 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
62, 4, 53imtr4g 205 . . 3 (𝐴𝐵 → (𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵))
76ssrdv 3207 . 2 (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
8 ssel 3195 . . . 4 (𝒫 𝐴 ⊆ 𝒫 𝐵 → ({𝑥} ∈ 𝒫 𝐴 → {𝑥} ∈ 𝒫 𝐵))
93snex 4245 . . . . . 6 {𝑥} ∈ V
109elpw 3632 . . . . 5 ({𝑥} ∈ 𝒫 𝐴 ↔ {𝑥} ⊆ 𝐴)
113snss 3779 . . . . 5 (𝑥𝐴 ↔ {𝑥} ⊆ 𝐴)
1210, 11bitr4i 187 . . . 4 ({𝑥} ∈ 𝒫 𝐴𝑥𝐴)
139elpw 3632 . . . . 5 ({𝑥} ∈ 𝒫 𝐵 ↔ {𝑥} ⊆ 𝐵)
143snss 3779 . . . . 5 (𝑥𝐵 ↔ {𝑥} ⊆ 𝐵)
1513, 14bitr4i 187 . . . 4 ({𝑥} ∈ 𝒫 𝐵𝑥𝐵)
168, 12, 153imtr3g 204 . . 3 (𝒫 𝐴 ⊆ 𝒫 𝐵 → (𝑥𝐴𝑥𝐵))
1716ssrdv 3207 . 2 (𝒫 𝐴 ⊆ 𝒫 𝐵𝐴𝐵)
187, 17impbii 126 1 (𝐴𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2178  wss 3174  𝒫 cpw 3626  {csn 3643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649
This theorem is referenced by:  pwel  4280  ssextss  4282  pweqb  4285  fiss  7105  pw1on  7372  ntrss  14706
  Copyright terms: Public domain W3C validator