Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sspwb | GIF version |
Description: Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.) |
Ref | Expression |
---|---|
sspwb | ⊢ (𝐴 ⊆ 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3149 | . . . . 5 ⊢ (𝑥 ⊆ 𝐴 → (𝐴 ⊆ 𝐵 → 𝑥 ⊆ 𝐵)) | |
2 | 1 | com12 30 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵)) |
3 | vex 2729 | . . . . 5 ⊢ 𝑥 ∈ V | |
4 | 3 | elpw 3565 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
5 | 3 | elpw 3565 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) |
6 | 2, 4, 5 | 3imtr4g 204 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵)) |
7 | 6 | ssrdv 3148 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
8 | ssel 3136 | . . . 4 ⊢ (𝒫 𝐴 ⊆ 𝒫 𝐵 → ({𝑥} ∈ 𝒫 𝐴 → {𝑥} ∈ 𝒫 𝐵)) | |
9 | 3 | snex 4164 | . . . . . 6 ⊢ {𝑥} ∈ V |
10 | 9 | elpw 3565 | . . . . 5 ⊢ ({𝑥} ∈ 𝒫 𝐴 ↔ {𝑥} ⊆ 𝐴) |
11 | 3 | snss 3702 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↔ {𝑥} ⊆ 𝐴) |
12 | 10, 11 | bitr4i 186 | . . . 4 ⊢ ({𝑥} ∈ 𝒫 𝐴 ↔ 𝑥 ∈ 𝐴) |
13 | 9 | elpw 3565 | . . . . 5 ⊢ ({𝑥} ∈ 𝒫 𝐵 ↔ {𝑥} ⊆ 𝐵) |
14 | 3 | snss 3702 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 ↔ {𝑥} ⊆ 𝐵) |
15 | 13, 14 | bitr4i 186 | . . . 4 ⊢ ({𝑥} ∈ 𝒫 𝐵 ↔ 𝑥 ∈ 𝐵) |
16 | 8, 12, 15 | 3imtr3g 203 | . . 3 ⊢ (𝒫 𝐴 ⊆ 𝒫 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
17 | 16 | ssrdv 3148 | . 2 ⊢ (𝒫 𝐴 ⊆ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) |
18 | 7, 17 | impbii 125 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∈ wcel 2136 ⊆ wss 3116 𝒫 cpw 3559 {csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 |
This theorem is referenced by: pwel 4196 ssextss 4198 pweqb 4201 fiss 6942 pw1on 7182 ntrss 12759 |
Copyright terms: Public domain | W3C validator |