![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sspwb | GIF version |
Description: Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.) |
Ref | Expression |
---|---|
sspwb | ⊢ (𝐴 ⊆ 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3186 | . . . . 5 ⊢ (𝑥 ⊆ 𝐴 → (𝐴 ⊆ 𝐵 → 𝑥 ⊆ 𝐵)) | |
2 | 1 | com12 30 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵)) |
3 | vex 2763 | . . . . 5 ⊢ 𝑥 ∈ V | |
4 | 3 | elpw 3607 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
5 | 3 | elpw 3607 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) |
6 | 2, 4, 5 | 3imtr4g 205 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵)) |
7 | 6 | ssrdv 3185 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
8 | ssel 3173 | . . . 4 ⊢ (𝒫 𝐴 ⊆ 𝒫 𝐵 → ({𝑥} ∈ 𝒫 𝐴 → {𝑥} ∈ 𝒫 𝐵)) | |
9 | 3 | snex 4214 | . . . . . 6 ⊢ {𝑥} ∈ V |
10 | 9 | elpw 3607 | . . . . 5 ⊢ ({𝑥} ∈ 𝒫 𝐴 ↔ {𝑥} ⊆ 𝐴) |
11 | 3 | snss 3753 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↔ {𝑥} ⊆ 𝐴) |
12 | 10, 11 | bitr4i 187 | . . . 4 ⊢ ({𝑥} ∈ 𝒫 𝐴 ↔ 𝑥 ∈ 𝐴) |
13 | 9 | elpw 3607 | . . . . 5 ⊢ ({𝑥} ∈ 𝒫 𝐵 ↔ {𝑥} ⊆ 𝐵) |
14 | 3 | snss 3753 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 ↔ {𝑥} ⊆ 𝐵) |
15 | 13, 14 | bitr4i 187 | . . . 4 ⊢ ({𝑥} ∈ 𝒫 𝐵 ↔ 𝑥 ∈ 𝐵) |
16 | 8, 12, 15 | 3imtr3g 204 | . . 3 ⊢ (𝒫 𝐴 ⊆ 𝒫 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
17 | 16 | ssrdv 3185 | . 2 ⊢ (𝒫 𝐴 ⊆ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) |
18 | 7, 17 | impbii 126 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∈ wcel 2164 ⊆ wss 3153 𝒫 cpw 3601 {csn 3618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 |
This theorem is referenced by: pwel 4247 ssextss 4249 pweqb 4252 fiss 7036 pw1on 7286 ntrss 14287 |
Copyright terms: Public domain | W3C validator |