Step | Hyp | Ref
| Expression |
1 | | 2onn 6536 |
. . . . . . . . 9
⊢
2o ∈ ω |
2 | | elnn 4617 |
. . . . . . . . 9
⊢ ((𝑘 ∈ 2o ∧
2o ∈ ω) → 𝑘 ∈ ω) |
3 | 1, 2 | mpan2 425 |
. . . . . . . 8
⊢ (𝑘 ∈ 2o →
𝑘 ∈
ω) |
4 | | peano1 4605 |
. . . . . . . 8
⊢ ∅
∈ ω |
5 | | nndceq 6514 |
. . . . . . . 8
⊢ ((𝑘 ∈ ω ∧ ∅
∈ ω) → DECID 𝑘 = ∅) |
6 | 3, 4, 5 | sylancl 413 |
. . . . . . 7
⊢ (𝑘 ∈ 2o →
DECID 𝑘 =
∅) |
7 | | ifiddc 3580 |
. . . . . . 7
⊢
(DECID 𝑘 = ∅ → if(𝑘 = ∅, 𝐴, 𝐴) = 𝐴) |
8 | 6, 7 | syl 14 |
. . . . . 6
⊢ (𝑘 ∈ 2o →
if(𝑘 = ∅, 𝐴, 𝐴) = 𝐴) |
9 | 8 | eleq2d 2257 |
. . . . 5
⊢ (𝑘 ∈ 2o →
(({〈∅, 𝑋〉,
〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴) ↔ ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ 𝐴)) |
10 | 9 | ralbiia 2501 |
. . . 4
⊢
(∀𝑘 ∈
2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴) ↔ ∀𝑘 ∈ 2o ({〈∅, 𝑋〉, 〈1o,
𝑌〉}‘𝑘) ∈ 𝐴) |
11 | 10 | anbi2i 457 |
. . 3
⊢
(({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧
∀𝑘 ∈
2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ ({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧
∀𝑘 ∈
2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ 𝐴)) |
12 | | df-3an 981 |
. . . 4
⊢
(({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V ∧
{〈∅, 𝑋〉,
〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o
({〈∅, 𝑋〉,
〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ (({〈∅, 𝑋〉, 〈1o,
𝑌〉} ∈ V ∧
{〈∅, 𝑋〉,
〈1o, 𝑌〉} Fn 2o) ∧
∀𝑘 ∈
2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴))) |
13 | | elixp2 6716 |
. . . 4
⊢
({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ X𝑘 ∈
2o if(𝑘 =
∅, 𝐴, 𝐴) ↔ ({〈∅, 𝑋〉, 〈1o,
𝑌〉} ∈ V ∧
{〈∅, 𝑋〉,
〈1o, 𝑌〉} Fn 2o ∧ ∀𝑘 ∈ 2o
({〈∅, 𝑋〉,
〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴))) |
14 | | fnex 5751 |
. . . . . . 7
⊢
(({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧
2o ∈ ω) → {〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈
V) |
15 | 1, 14 | mpan2 425 |
. . . . . 6
⊢
({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o →
{〈∅, 𝑋〉,
〈1o, 𝑌〉} ∈ V) |
16 | 15 | pm4.71ri 392 |
. . . . 5
⊢
({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ↔
({〈∅, 𝑋〉,
〈1o, 𝑌〉} ∈ V ∧ {〈∅, 𝑋〉, 〈1o,
𝑌〉} Fn
2o)) |
17 | 16 | anbi1i 458 |
. . . 4
⊢
(({〈∅, 𝑋〉, 〈1o, 𝑌〉} Fn 2o ∧
∀𝑘 ∈
2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ (({〈∅, 𝑋〉, 〈1o,
𝑌〉} ∈ V ∧
{〈∅, 𝑋〉,
〈1o, 𝑌〉} Fn 2o) ∧
∀𝑘 ∈
2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴))) |
18 | 12, 13, 17 | 3bitr4i 212 |
. . 3
⊢
({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ X𝑘 ∈
2o if(𝑘 =
∅, 𝐴, 𝐴) ↔ ({〈∅, 𝑋〉, 〈1o,
𝑌〉} Fn 2o
∧ ∀𝑘 ∈
2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴))) |
19 | | ffnfv 5687 |
. . 3
⊢
({〈∅, 𝑋〉, 〈1o, 𝑌〉}:2o⟶𝐴 ↔ ({〈∅, 𝑋〉, 〈1o,
𝑌〉} Fn 2o
∧ ∀𝑘 ∈
2o ({〈∅, 𝑋〉, 〈1o, 𝑌〉}‘𝑘) ∈ 𝐴)) |
20 | 11, 18, 19 | 3bitr4i 212 |
. 2
⊢
({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ X𝑘 ∈
2o if(𝑘 =
∅, 𝐴, 𝐴) ↔ {〈∅, 𝑋〉, 〈1o,
𝑌〉}:2o⟶𝐴) |
21 | | xpsfrnel2 12784 |
. 2
⊢
({〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ X𝑘 ∈
2o if(𝑘 =
∅, 𝐴, 𝐴) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) |
22 | 20, 21 | bitr3i 186 |
1
⊢
({〈∅, 𝑋〉, 〈1o, 𝑌〉}:2o⟶𝐴 ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) |