ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpscf GIF version

Theorem xpscf 13179
Description: Equivalent condition for the pair function to be a proper function on 𝐴. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xpscf ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}:2o𝐴 ↔ (𝑋𝐴𝑌𝐴))

Proof of Theorem xpscf
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2onn 6607 . . . . . . . . 9 2o ∈ ω
2 elnn 4654 . . . . . . . . 9 ((𝑘 ∈ 2o ∧ 2o ∈ ω) → 𝑘 ∈ ω)
31, 2mpan2 425 . . . . . . . 8 (𝑘 ∈ 2o𝑘 ∈ ω)
4 peano1 4642 . . . . . . . 8 ∅ ∈ ω
5 nndceq 6585 . . . . . . . 8 ((𝑘 ∈ ω ∧ ∅ ∈ ω) → DECID 𝑘 = ∅)
63, 4, 5sylancl 413 . . . . . . 7 (𝑘 ∈ 2oDECID 𝑘 = ∅)
7 ifiddc 3606 . . . . . . 7 (DECID 𝑘 = ∅ → if(𝑘 = ∅, 𝐴, 𝐴) = 𝐴)
86, 7syl 14 . . . . . 6 (𝑘 ∈ 2o → if(𝑘 = ∅, 𝐴, 𝐴) = 𝐴)
98eleq2d 2275 . . . . 5 (𝑘 ∈ 2o → (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ 𝐴))
109ralbiia 2520 . . . 4 (∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴) ↔ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ 𝐴)
1110anbi2i 457 . . 3 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ 𝐴))
12 df-3an 983 . . . 4 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o) ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)))
13 elixp2 6789 . . . 4 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)))
14 fnex 5806 . . . . . . 7 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ 2o ∈ ω) → {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V)
151, 14mpan2 425 . . . . . 6 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o → {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V)
1615pm4.71ri 392 . . . . 5 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o))
1716anbi1i 458 . . . 4 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V ∧ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o) ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)))
1812, 13, 173bitr4i 212 . . 3 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)))
19 ffnfv 5738 . . 3 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}:2o𝐴 ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ∀𝑘 ∈ 2o ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘𝑘) ∈ 𝐴))
2011, 18, 193bitr4i 212 . 2 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}:2o𝐴)
21 xpsfrnel2 13178 . 2 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐴) ↔ (𝑋𝐴𝑌𝐴))
2220, 21bitr3i 186 1 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}:2o𝐴 ↔ (𝑋𝐴𝑌𝐴))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  DECID wdc 836  w3a 981   = wceq 1373  wcel 2176  wral 2484  Vcvv 2772  c0 3460  ifcif 3571  {cpr 3634  cop 3636  ωcom 4638   Fn wfn 5266  wf 5267  cfv 5271  1oc1o 6495  2oc2o 6496  Xcixp 6785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1o 6502  df-2o 6503  df-er 6620  df-ixp 6786  df-en 6828  df-fin 6830
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator