ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resixp GIF version

Theorem resixp 6699
Description: Restriction of an element of an infinite Cartesian product. (Contributed by FL, 7-Nov-2011.) (Proof shortened by Mario Carneiro, 31-May-2014.)
Assertion
Ref Expression
resixp ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → (𝐹𝐵) ∈ X𝑥𝐵 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem resixp
StepHypRef Expression
1 resexg 4924 . . 3 (𝐹X𝑥𝐴 𝐶 → (𝐹𝐵) ∈ V)
21adantl 275 . 2 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → (𝐹𝐵) ∈ V)
3 simpr 109 . . . . 5 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → 𝐹X𝑥𝐴 𝐶)
4 elixp2 6668 . . . . 5 (𝐹X𝑥𝐴 𝐶 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐶))
53, 4sylib 121 . . . 4 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐶))
65simp2d 1000 . . 3 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → 𝐹 Fn 𝐴)
7 simpl 108 . . 3 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → 𝐵𝐴)
8 fnssres 5301 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) Fn 𝐵)
96, 7, 8syl2anc 409 . 2 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → (𝐹𝐵) Fn 𝐵)
105simp3d 1001 . . . 4 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐶)
11 ssralv 3206 . . . 4 (𝐵𝐴 → (∀𝑥𝐴 (𝐹𝑥) ∈ 𝐶 → ∀𝑥𝐵 (𝐹𝑥) ∈ 𝐶))
127, 10, 11sylc 62 . . 3 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → ∀𝑥𝐵 (𝐹𝑥) ∈ 𝐶)
13 fvres 5510 . . . . 5 (𝑥𝐵 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
1413eleq1d 2235 . . . 4 (𝑥𝐵 → (((𝐹𝐵)‘𝑥) ∈ 𝐶 ↔ (𝐹𝑥) ∈ 𝐶))
1514ralbiia 2480 . . 3 (∀𝑥𝐵 ((𝐹𝐵)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐵 (𝐹𝑥) ∈ 𝐶)
1612, 15sylibr 133 . 2 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → ∀𝑥𝐵 ((𝐹𝐵)‘𝑥) ∈ 𝐶)
17 elixp2 6668 . 2 ((𝐹𝐵) ∈ X𝑥𝐵 𝐶 ↔ ((𝐹𝐵) ∈ V ∧ (𝐹𝐵) Fn 𝐵 ∧ ∀𝑥𝐵 ((𝐹𝐵)‘𝑥) ∈ 𝐶))
182, 9, 16, 17syl3anbrc 1171 1 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → (𝐹𝐵) ∈ X𝑥𝐵 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968  wcel 2136  wral 2444  Vcvv 2726  wss 3116  cres 4606   Fn wfn 5183  cfv 5188  Xcixp 6664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196  df-ixp 6665
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator