![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resixp | GIF version |
Description: Restriction of an element of an infinite Cartesian product. (Contributed by FL, 7-Nov-2011.) (Proof shortened by Mario Carneiro, 31-May-2014.) |
Ref | Expression |
---|---|
resixp | ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ↾ 𝐵) ∈ X𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resexg 4949 | . . 3 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐶 → (𝐹 ↾ 𝐵) ∈ V) | |
2 | 1 | adantl 277 | . 2 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ↾ 𝐵) ∈ V) |
3 | simpr 110 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) | |
4 | elixp2 6704 | . . . . 5 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐶 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐶)) | |
5 | 3, 4 | sylib 122 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐶)) |
6 | 5 | simp2d 1010 | . . 3 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → 𝐹 Fn 𝐴) |
7 | simpl 109 | . . 3 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → 𝐵 ⊆ 𝐴) | |
8 | fnssres 5331 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) | |
9 | 6, 7, 8 | syl2anc 411 | . 2 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ↾ 𝐵) Fn 𝐵) |
10 | 5 | simp3d 1011 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐶) |
11 | ssralv 3221 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐶 → ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) ∈ 𝐶)) | |
12 | 7, 10, 11 | sylc 62 | . . 3 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) ∈ 𝐶) |
13 | fvres 5541 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝑥) = (𝐹‘𝑥)) | |
14 | 13 | eleq1d 2246 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐶 ↔ (𝐹‘𝑥) ∈ 𝐶)) |
15 | 14 | ralbiia 2491 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) ∈ 𝐶) |
16 | 12, 15 | sylibr 134 | . 2 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → ∀𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐶) |
17 | elixp2 6704 | . 2 ⊢ ((𝐹 ↾ 𝐵) ∈ X𝑥 ∈ 𝐵 𝐶 ↔ ((𝐹 ↾ 𝐵) ∈ V ∧ (𝐹 ↾ 𝐵) Fn 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐶)) | |
18 | 2, 9, 16, 17 | syl3anbrc 1181 | 1 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐶) → (𝐹 ↾ 𝐵) ∈ X𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 ∈ wcel 2148 ∀wral 2455 Vcvv 2739 ⊆ wss 3131 ↾ cres 4630 Fn wfn 5213 ‘cfv 5218 Xcixp 6700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-res 4640 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 df-ixp 6701 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |