ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resixp GIF version

Theorem resixp 6801
Description: Restriction of an element of an infinite Cartesian product. (Contributed by FL, 7-Nov-2011.) (Proof shortened by Mario Carneiro, 31-May-2014.)
Assertion
Ref Expression
resixp ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → (𝐹𝐵) ∈ X𝑥𝐵 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem resixp
StepHypRef Expression
1 resexg 4987 . . 3 (𝐹X𝑥𝐴 𝐶 → (𝐹𝐵) ∈ V)
21adantl 277 . 2 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → (𝐹𝐵) ∈ V)
3 simpr 110 . . . . 5 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → 𝐹X𝑥𝐴 𝐶)
4 elixp2 6770 . . . . 5 (𝐹X𝑥𝐴 𝐶 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐶))
53, 4sylib 122 . . . 4 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐶))
65simp2d 1012 . . 3 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → 𝐹 Fn 𝐴)
7 simpl 109 . . 3 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → 𝐵𝐴)
8 fnssres 5374 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) Fn 𝐵)
96, 7, 8syl2anc 411 . 2 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → (𝐹𝐵) Fn 𝐵)
105simp3d 1013 . . . 4 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐶)
11 ssralv 3248 . . . 4 (𝐵𝐴 → (∀𝑥𝐴 (𝐹𝑥) ∈ 𝐶 → ∀𝑥𝐵 (𝐹𝑥) ∈ 𝐶))
127, 10, 11sylc 62 . . 3 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → ∀𝑥𝐵 (𝐹𝑥) ∈ 𝐶)
13 fvres 5585 . . . . 5 (𝑥𝐵 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
1413eleq1d 2265 . . . 4 (𝑥𝐵 → (((𝐹𝐵)‘𝑥) ∈ 𝐶 ↔ (𝐹𝑥) ∈ 𝐶))
1514ralbiia 2511 . . 3 (∀𝑥𝐵 ((𝐹𝐵)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐵 (𝐹𝑥) ∈ 𝐶)
1612, 15sylibr 134 . 2 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → ∀𝑥𝐵 ((𝐹𝐵)‘𝑥) ∈ 𝐶)
17 elixp2 6770 . 2 ((𝐹𝐵) ∈ X𝑥𝐵 𝐶 ↔ ((𝐹𝐵) ∈ V ∧ (𝐹𝐵) Fn 𝐵 ∧ ∀𝑥𝐵 ((𝐹𝐵)‘𝑥) ∈ 𝐶))
182, 9, 16, 17syl3anbrc 1183 1 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → (𝐹𝐵) ∈ X𝑥𝐵 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wcel 2167  wral 2475  Vcvv 2763  wss 3157  cres 4666   Fn wfn 5254  cfv 5259  Xcixp 6766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ixp 6767
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator