Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  cndcap GIF version

Theorem cndcap 15549
Description: Real number trichotomy is equivalent to decidability of complex number apartness. (Contributed by Jim Kingdon, 10-Apr-2025.)
Assertion
Ref Expression
cndcap (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤)
Distinct variable group:   𝑥,𝑤,𝑦,𝑧

Proof of Theorem cndcap
StepHypRef Expression
1 breq2 4033 . . . . . . 7 (𝑦 = (ℜ‘𝑤) → ((ℜ‘𝑧) # 𝑦 ↔ (ℜ‘𝑧) # (ℜ‘𝑤)))
21dcbid 839 . . . . . 6 (𝑦 = (ℜ‘𝑤) → (DECID (ℜ‘𝑧) # 𝑦DECID (ℜ‘𝑧) # (ℜ‘𝑤)))
3 breq1 4032 . . . . . . . . 9 (𝑥 = (ℜ‘𝑧) → (𝑥 # 𝑦 ↔ (ℜ‘𝑧) # 𝑦))
43dcbid 839 . . . . . . . 8 (𝑥 = (ℜ‘𝑧) → (DECID 𝑥 # 𝑦DECID (ℜ‘𝑧) # 𝑦))
54ralbidv 2494 . . . . . . 7 (𝑥 = (ℜ‘𝑧) → (∀𝑦 ∈ ℝ DECID 𝑥 # 𝑦 ↔ ∀𝑦 ∈ ℝ DECID (ℜ‘𝑧) # 𝑦))
6 triap 15519 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ DECID 𝑥 # 𝑦))
76ralbidva 2490 . . . . . . . . . 10 (𝑥 ∈ ℝ → (∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑦 ∈ ℝ DECID 𝑥 # 𝑦))
87ralbiia 2508 . . . . . . . . 9 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 # 𝑦)
98biimpi 120 . . . . . . . 8 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 # 𝑦)
109adantr 276 . . . . . . 7 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 # 𝑦)
11 simprl 529 . . . . . . . 8 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → 𝑧 ∈ ℂ)
1211recld 11082 . . . . . . 7 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (ℜ‘𝑧) ∈ ℝ)
135, 10, 12rspcdva 2869 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → ∀𝑦 ∈ ℝ DECID (ℜ‘𝑧) # 𝑦)
14 simprr 531 . . . . . . 7 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → 𝑤 ∈ ℂ)
1514recld 11082 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (ℜ‘𝑤) ∈ ℝ)
162, 13, 15rspcdva 2869 . . . . 5 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → DECID (ℜ‘𝑧) # (ℜ‘𝑤))
17 breq2 4033 . . . . . . 7 (𝑦 = (ℑ‘𝑤) → ((ℑ‘𝑧) # 𝑦 ↔ (ℑ‘𝑧) # (ℑ‘𝑤)))
1817dcbid 839 . . . . . 6 (𝑦 = (ℑ‘𝑤) → (DECID (ℑ‘𝑧) # 𝑦DECID (ℑ‘𝑧) # (ℑ‘𝑤)))
19 breq1 4032 . . . . . . . . 9 (𝑥 = (ℑ‘𝑧) → (𝑥 # 𝑦 ↔ (ℑ‘𝑧) # 𝑦))
2019dcbid 839 . . . . . . . 8 (𝑥 = (ℑ‘𝑧) → (DECID 𝑥 # 𝑦DECID (ℑ‘𝑧) # 𝑦))
2120ralbidv 2494 . . . . . . 7 (𝑥 = (ℑ‘𝑧) → (∀𝑦 ∈ ℝ DECID 𝑥 # 𝑦 ↔ ∀𝑦 ∈ ℝ DECID (ℑ‘𝑧) # 𝑦))
2211imcld 11083 . . . . . . 7 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (ℑ‘𝑧) ∈ ℝ)
2321, 10, 22rspcdva 2869 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → ∀𝑦 ∈ ℝ DECID (ℑ‘𝑧) # 𝑦)
2414imcld 11083 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (ℑ‘𝑤) ∈ ℝ)
2518, 23, 24rspcdva 2869 . . . . 5 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → DECID (ℑ‘𝑧) # (ℑ‘𝑤))
26 dcor 937 . . . . 5 (DECID (ℜ‘𝑧) # (ℜ‘𝑤) → (DECID (ℑ‘𝑧) # (ℑ‘𝑤) → DECID ((ℜ‘𝑧) # (ℜ‘𝑤) ∨ (ℑ‘𝑧) # (ℑ‘𝑤))))
2716, 25, 26sylc 62 . . . 4 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → DECID ((ℜ‘𝑧) # (ℜ‘𝑤) ∨ (ℑ‘𝑧) # (ℑ‘𝑤)))
28 cnreim 11122 . . . . . 6 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 # 𝑤 ↔ ((ℜ‘𝑧) # (ℜ‘𝑤) ∨ (ℑ‘𝑧) # (ℑ‘𝑤))))
2928dcbid 839 . . . . 5 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (DECID 𝑧 # 𝑤DECID ((ℜ‘𝑧) # (ℜ‘𝑤) ∨ (ℑ‘𝑧) # (ℑ‘𝑤))))
3029adantl 277 . . . 4 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (DECID 𝑧 # 𝑤DECID ((ℜ‘𝑧) # (ℜ‘𝑤) ∨ (ℑ‘𝑧) # (ℑ‘𝑤))))
3127, 30mpbird 167 . . 3 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → DECID 𝑧 # 𝑤)
3231ralrimivva 2576 . 2 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → ∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤)
33 breq2 4033 . . . . . 6 (𝑤 = 𝑦 → (𝑥 # 𝑤𝑥 # 𝑦))
3433dcbid 839 . . . . 5 (𝑤 = 𝑦 → (DECID 𝑥 # 𝑤DECID 𝑥 # 𝑦))
35 breq1 4032 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧 # 𝑤𝑥 # 𝑤))
3635dcbid 839 . . . . . . 7 (𝑧 = 𝑥 → (DECID 𝑧 # 𝑤DECID 𝑥 # 𝑤))
3736ralbidv 2494 . . . . . 6 (𝑧 = 𝑥 → (∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ↔ ∀𝑤 ∈ ℂ DECID 𝑥 # 𝑤))
38 simpl 109 . . . . . 6 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤)
39 simprl 529 . . . . . . 7 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
4039recnd 8048 . . . . . 6 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℂ)
4137, 38, 40rspcdva 2869 . . . . 5 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑤 ∈ ℂ DECID 𝑥 # 𝑤)
42 simprr 531 . . . . . 6 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
4342recnd 8048 . . . . 5 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℂ)
4434, 41, 43rspcdva 2869 . . . 4 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → DECID 𝑥 # 𝑦)
456adantl 277 . . . 4 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ DECID 𝑥 # 𝑦))
4644, 45mpbird 167 . . 3 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
4746ralrimivva 2576 . 2 (∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
4832, 47impbii 126 1 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wo 709  DECID wdc 835  w3o 979   = wceq 1364  wcel 2164  wral 2472   class class class wbr 4029  cfv 5254  cc 7870  cr 7871   < clt 8054   # cap 8600  cre 10984  cim 10985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-2 9041  df-cj 10986  df-re 10987  df-im 10988
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator