Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  cndcap GIF version

Theorem cndcap 16200
Description: Real number trichotomy is equivalent to decidability of complex number apartness. (Contributed by Jim Kingdon, 10-Apr-2025.)
Assertion
Ref Expression
cndcap (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤)
Distinct variable group:   𝑥,𝑤,𝑦,𝑧

Proof of Theorem cndcap
StepHypRef Expression
1 breq2 4063 . . . . . . 7 (𝑦 = (ℜ‘𝑤) → ((ℜ‘𝑧) # 𝑦 ↔ (ℜ‘𝑧) # (ℜ‘𝑤)))
21dcbid 840 . . . . . 6 (𝑦 = (ℜ‘𝑤) → (DECID (ℜ‘𝑧) # 𝑦DECID (ℜ‘𝑧) # (ℜ‘𝑤)))
3 breq1 4062 . . . . . . . . 9 (𝑥 = (ℜ‘𝑧) → (𝑥 # 𝑦 ↔ (ℜ‘𝑧) # 𝑦))
43dcbid 840 . . . . . . . 8 (𝑥 = (ℜ‘𝑧) → (DECID 𝑥 # 𝑦DECID (ℜ‘𝑧) # 𝑦))
54ralbidv 2508 . . . . . . 7 (𝑥 = (ℜ‘𝑧) → (∀𝑦 ∈ ℝ DECID 𝑥 # 𝑦 ↔ ∀𝑦 ∈ ℝ DECID (ℜ‘𝑧) # 𝑦))
6 triap 16170 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ DECID 𝑥 # 𝑦))
76ralbidva 2504 . . . . . . . . . 10 (𝑥 ∈ ℝ → (∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑦 ∈ ℝ DECID 𝑥 # 𝑦))
87ralbiia 2522 . . . . . . . . 9 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 # 𝑦)
98biimpi 120 . . . . . . . 8 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 # 𝑦)
109adantr 276 . . . . . . 7 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 # 𝑦)
11 simprl 529 . . . . . . . 8 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → 𝑧 ∈ ℂ)
1211recld 11364 . . . . . . 7 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (ℜ‘𝑧) ∈ ℝ)
135, 10, 12rspcdva 2889 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → ∀𝑦 ∈ ℝ DECID (ℜ‘𝑧) # 𝑦)
14 simprr 531 . . . . . . 7 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → 𝑤 ∈ ℂ)
1514recld 11364 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (ℜ‘𝑤) ∈ ℝ)
162, 13, 15rspcdva 2889 . . . . 5 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → DECID (ℜ‘𝑧) # (ℜ‘𝑤))
17 breq2 4063 . . . . . . 7 (𝑦 = (ℑ‘𝑤) → ((ℑ‘𝑧) # 𝑦 ↔ (ℑ‘𝑧) # (ℑ‘𝑤)))
1817dcbid 840 . . . . . 6 (𝑦 = (ℑ‘𝑤) → (DECID (ℑ‘𝑧) # 𝑦DECID (ℑ‘𝑧) # (ℑ‘𝑤)))
19 breq1 4062 . . . . . . . . 9 (𝑥 = (ℑ‘𝑧) → (𝑥 # 𝑦 ↔ (ℑ‘𝑧) # 𝑦))
2019dcbid 840 . . . . . . . 8 (𝑥 = (ℑ‘𝑧) → (DECID 𝑥 # 𝑦DECID (ℑ‘𝑧) # 𝑦))
2120ralbidv 2508 . . . . . . 7 (𝑥 = (ℑ‘𝑧) → (∀𝑦 ∈ ℝ DECID 𝑥 # 𝑦 ↔ ∀𝑦 ∈ ℝ DECID (ℑ‘𝑧) # 𝑦))
2211imcld 11365 . . . . . . 7 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (ℑ‘𝑧) ∈ ℝ)
2321, 10, 22rspcdva 2889 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → ∀𝑦 ∈ ℝ DECID (ℑ‘𝑧) # 𝑦)
2414imcld 11365 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (ℑ‘𝑤) ∈ ℝ)
2518, 23, 24rspcdva 2889 . . . . 5 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → DECID (ℑ‘𝑧) # (ℑ‘𝑤))
26 dcor 938 . . . . 5 (DECID (ℜ‘𝑧) # (ℜ‘𝑤) → (DECID (ℑ‘𝑧) # (ℑ‘𝑤) → DECID ((ℜ‘𝑧) # (ℜ‘𝑤) ∨ (ℑ‘𝑧) # (ℑ‘𝑤))))
2716, 25, 26sylc 62 . . . 4 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → DECID ((ℜ‘𝑧) # (ℜ‘𝑤) ∨ (ℑ‘𝑧) # (ℑ‘𝑤)))
28 cnreim 11404 . . . . . 6 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 # 𝑤 ↔ ((ℜ‘𝑧) # (ℜ‘𝑤) ∨ (ℑ‘𝑧) # (ℑ‘𝑤))))
2928dcbid 840 . . . . 5 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (DECID 𝑧 # 𝑤DECID ((ℜ‘𝑧) # (ℜ‘𝑤) ∨ (ℑ‘𝑧) # (ℑ‘𝑤))))
3029adantl 277 . . . 4 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (DECID 𝑧 # 𝑤DECID ((ℜ‘𝑧) # (ℜ‘𝑤) ∨ (ℑ‘𝑧) # (ℑ‘𝑤))))
3127, 30mpbird 167 . . 3 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → DECID 𝑧 # 𝑤)
3231ralrimivva 2590 . 2 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → ∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤)
33 breq2 4063 . . . . . 6 (𝑤 = 𝑦 → (𝑥 # 𝑤𝑥 # 𝑦))
3433dcbid 840 . . . . 5 (𝑤 = 𝑦 → (DECID 𝑥 # 𝑤DECID 𝑥 # 𝑦))
35 breq1 4062 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧 # 𝑤𝑥 # 𝑤))
3635dcbid 840 . . . . . . 7 (𝑧 = 𝑥 → (DECID 𝑧 # 𝑤DECID 𝑥 # 𝑤))
3736ralbidv 2508 . . . . . 6 (𝑧 = 𝑥 → (∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ↔ ∀𝑤 ∈ ℂ DECID 𝑥 # 𝑤))
38 simpl 109 . . . . . 6 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤)
39 simprl 529 . . . . . . 7 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
4039recnd 8136 . . . . . 6 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℂ)
4137, 38, 40rspcdva 2889 . . . . 5 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑤 ∈ ℂ DECID 𝑥 # 𝑤)
42 simprr 531 . . . . . 6 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
4342recnd 8136 . . . . 5 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℂ)
4434, 41, 43rspcdva 2889 . . . 4 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → DECID 𝑥 # 𝑦)
456adantl 277 . . . 4 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ DECID 𝑥 # 𝑦))
4644, 45mpbird 167 . . 3 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
4746ralrimivva 2590 . 2 (∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
4832, 47impbii 126 1 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wo 710  DECID wdc 836  w3o 980   = wceq 1373  wcel 2178  wral 2486   class class class wbr 4059  cfv 5290  cc 7958  cr 7959   < clt 8142   # cap 8689  cre 11266  cim 11267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-2 9130  df-cj 11268  df-re 11269  df-im 11270
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator