Step | Hyp | Ref
| Expression |
1 | | breq2 4009 |
. . . . . . 7
⊢ (𝑦 = (ℜ‘𝑤) → ((ℜ‘𝑧) # 𝑦 ↔ (ℜ‘𝑧) # (ℜ‘𝑤))) |
2 | 1 | dcbid 838 |
. . . . . 6
⊢ (𝑦 = (ℜ‘𝑤) → (DECID
(ℜ‘𝑧) # 𝑦 ↔ DECID
(ℜ‘𝑧) #
(ℜ‘𝑤))) |
3 | | breq1 4008 |
. . . . . . . . 9
⊢ (𝑥 = (ℜ‘𝑧) → (𝑥 # 𝑦 ↔ (ℜ‘𝑧) # 𝑦)) |
4 | 3 | dcbid 838 |
. . . . . . . 8
⊢ (𝑥 = (ℜ‘𝑧) → (DECID
𝑥 # 𝑦 ↔ DECID
(ℜ‘𝑧) # 𝑦)) |
5 | 4 | ralbidv 2477 |
. . . . . . 7
⊢ (𝑥 = (ℜ‘𝑧) → (∀𝑦 ∈ ℝ
DECID 𝑥 #
𝑦 ↔ ∀𝑦 ∈ ℝ
DECID (ℜ‘𝑧) # 𝑦)) |
6 | | triap 14862 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ DECID 𝑥 # 𝑦)) |
7 | 6 | ralbidva 2473 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ →
(∀𝑦 ∈ ℝ
(𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ ∀𝑦 ∈ ℝ DECID 𝑥 # 𝑦)) |
8 | 7 | ralbiia 2491 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 # 𝑦) |
9 | 8 | biimpi 120 |
. . . . . . . 8
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 # 𝑦) |
10 | 9 | adantr 276 |
. . . . . . 7
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ
DECID 𝑥 #
𝑦) |
11 | | simprl 529 |
. . . . . . . 8
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → 𝑧 ∈ ℂ) |
12 | 11 | recld 10949 |
. . . . . . 7
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (ℜ‘𝑧) ∈
ℝ) |
13 | 5, 10, 12 | rspcdva 2848 |
. . . . . 6
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → ∀𝑦 ∈ ℝ
DECID (ℜ‘𝑧) # 𝑦) |
14 | | simprr 531 |
. . . . . . 7
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → 𝑤 ∈ ℂ) |
15 | 14 | recld 10949 |
. . . . . 6
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (ℜ‘𝑤) ∈
ℝ) |
16 | 2, 13, 15 | rspcdva 2848 |
. . . . 5
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → DECID
(ℜ‘𝑧) #
(ℜ‘𝑤)) |
17 | | breq2 4009 |
. . . . . . 7
⊢ (𝑦 = (ℑ‘𝑤) → ((ℑ‘𝑧) # 𝑦 ↔ (ℑ‘𝑧) # (ℑ‘𝑤))) |
18 | 17 | dcbid 838 |
. . . . . 6
⊢ (𝑦 = (ℑ‘𝑤) → (DECID
(ℑ‘𝑧) # 𝑦 ↔ DECID
(ℑ‘𝑧) #
(ℑ‘𝑤))) |
19 | | breq1 4008 |
. . . . . . . . 9
⊢ (𝑥 = (ℑ‘𝑧) → (𝑥 # 𝑦 ↔ (ℑ‘𝑧) # 𝑦)) |
20 | 19 | dcbid 838 |
. . . . . . . 8
⊢ (𝑥 = (ℑ‘𝑧) → (DECID
𝑥 # 𝑦 ↔ DECID
(ℑ‘𝑧) # 𝑦)) |
21 | 20 | ralbidv 2477 |
. . . . . . 7
⊢ (𝑥 = (ℑ‘𝑧) → (∀𝑦 ∈ ℝ
DECID 𝑥 #
𝑦 ↔ ∀𝑦 ∈ ℝ
DECID (ℑ‘𝑧) # 𝑦)) |
22 | 11 | imcld 10950 |
. . . . . . 7
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (ℑ‘𝑧) ∈
ℝ) |
23 | 21, 10, 22 | rspcdva 2848 |
. . . . . 6
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → ∀𝑦 ∈ ℝ
DECID (ℑ‘𝑧) # 𝑦) |
24 | 14 | imcld 10950 |
. . . . . 6
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (ℑ‘𝑤) ∈
ℝ) |
25 | 18, 23, 24 | rspcdva 2848 |
. . . . 5
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → DECID
(ℑ‘𝑧) #
(ℑ‘𝑤)) |
26 | | dcor 935 |
. . . . 5
⊢
(DECID (ℜ‘𝑧) # (ℜ‘𝑤) → (DECID
(ℑ‘𝑧) #
(ℑ‘𝑤) →
DECID ((ℜ‘𝑧) # (ℜ‘𝑤) ∨ (ℑ‘𝑧) # (ℑ‘𝑤)))) |
27 | 16, 25, 26 | sylc 62 |
. . . 4
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → DECID
((ℜ‘𝑧) #
(ℜ‘𝑤) ∨
(ℑ‘𝑧) #
(ℑ‘𝑤))) |
28 | | cnreim 10989 |
. . . . . 6
⊢ ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 # 𝑤 ↔ ((ℜ‘𝑧) # (ℜ‘𝑤) ∨ (ℑ‘𝑧) # (ℑ‘𝑤)))) |
29 | 28 | dcbid 838 |
. . . . 5
⊢ ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) →
(DECID 𝑧 #
𝑤 ↔
DECID ((ℜ‘𝑧) # (ℜ‘𝑤) ∨ (ℑ‘𝑧) # (ℑ‘𝑤)))) |
30 | 29 | adantl 277 |
. . . 4
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) →
(DECID 𝑧 #
𝑤 ↔
DECID ((ℜ‘𝑧) # (ℜ‘𝑤) ∨ (ℑ‘𝑧) # (ℑ‘𝑤)))) |
31 | 27, 30 | mpbird 167 |
. . 3
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → DECID
𝑧 # 𝑤) |
32 | 31 | ralrimivva 2559 |
. 2
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) → ∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤) |
33 | | breq2 4009 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (𝑥 # 𝑤 ↔ 𝑥 # 𝑦)) |
34 | 33 | dcbid 838 |
. . . . 5
⊢ (𝑤 = 𝑦 → (DECID 𝑥 # 𝑤 ↔ DECID 𝑥 # 𝑦)) |
35 | | breq1 4008 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → (𝑧 # 𝑤 ↔ 𝑥 # 𝑤)) |
36 | 35 | dcbid 838 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → (DECID 𝑧 # 𝑤 ↔ DECID 𝑥 # 𝑤)) |
37 | 36 | ralbidv 2477 |
. . . . . 6
⊢ (𝑧 = 𝑥 → (∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ↔ ∀𝑤 ∈ ℂ DECID 𝑥 # 𝑤)) |
38 | | simpl 109 |
. . . . . 6
⊢
((∀𝑧 ∈
ℂ ∀𝑤 ∈
ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ
DECID 𝑧 #
𝑤) |
39 | | simprl 529 |
. . . . . . 7
⊢
((∀𝑧 ∈
ℂ ∀𝑤 ∈
ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ) |
40 | 39 | recnd 7988 |
. . . . . 6
⊢
((∀𝑧 ∈
ℂ ∀𝑤 ∈
ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℂ) |
41 | 37, 38, 40 | rspcdva 2848 |
. . . . 5
⊢
((∀𝑧 ∈
ℂ ∀𝑤 ∈
ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑤 ∈ ℂ
DECID 𝑥 #
𝑤) |
42 | | simprr 531 |
. . . . . 6
⊢
((∀𝑧 ∈
ℂ ∀𝑤 ∈
ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ) |
43 | 42 | recnd 7988 |
. . . . 5
⊢
((∀𝑧 ∈
ℂ ∀𝑤 ∈
ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℂ) |
44 | 34, 41, 43 | rspcdva 2848 |
. . . 4
⊢
((∀𝑧 ∈
ℂ ∀𝑤 ∈
ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → DECID
𝑥 # 𝑦) |
45 | 6 | adantl 277 |
. . . 4
⊢
((∀𝑧 ∈
ℂ ∀𝑤 ∈
ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ DECID 𝑥 # 𝑦)) |
46 | 44, 45 | mpbird 167 |
. . 3
⊢
((∀𝑧 ∈
ℂ ∀𝑤 ∈
ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) |
47 | 46 | ralrimivva 2559 |
. 2
⊢
(∀𝑧 ∈
ℂ ∀𝑤 ∈
ℂ DECID 𝑧 # 𝑤 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) |
48 | 32, 47 | impbii 126 |
1
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ ∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤) |