Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  cndcap GIF version

Theorem cndcap 15960
Description: Real number trichotomy is equivalent to decidability of complex number apartness. (Contributed by Jim Kingdon, 10-Apr-2025.)
Assertion
Ref Expression
cndcap (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤)
Distinct variable group:   𝑥,𝑤,𝑦,𝑧

Proof of Theorem cndcap
StepHypRef Expression
1 breq2 4047 . . . . . . 7 (𝑦 = (ℜ‘𝑤) → ((ℜ‘𝑧) # 𝑦 ↔ (ℜ‘𝑧) # (ℜ‘𝑤)))
21dcbid 839 . . . . . 6 (𝑦 = (ℜ‘𝑤) → (DECID (ℜ‘𝑧) # 𝑦DECID (ℜ‘𝑧) # (ℜ‘𝑤)))
3 breq1 4046 . . . . . . . . 9 (𝑥 = (ℜ‘𝑧) → (𝑥 # 𝑦 ↔ (ℜ‘𝑧) # 𝑦))
43dcbid 839 . . . . . . . 8 (𝑥 = (ℜ‘𝑧) → (DECID 𝑥 # 𝑦DECID (ℜ‘𝑧) # 𝑦))
54ralbidv 2505 . . . . . . 7 (𝑥 = (ℜ‘𝑧) → (∀𝑦 ∈ ℝ DECID 𝑥 # 𝑦 ↔ ∀𝑦 ∈ ℝ DECID (ℜ‘𝑧) # 𝑦))
6 triap 15930 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ DECID 𝑥 # 𝑦))
76ralbidva 2501 . . . . . . . . . 10 (𝑥 ∈ ℝ → (∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑦 ∈ ℝ DECID 𝑥 # 𝑦))
87ralbiia 2519 . . . . . . . . 9 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 # 𝑦)
98biimpi 120 . . . . . . . 8 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 # 𝑦)
109adantr 276 . . . . . . 7 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 # 𝑦)
11 simprl 529 . . . . . . . 8 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → 𝑧 ∈ ℂ)
1211recld 11220 . . . . . . 7 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (ℜ‘𝑧) ∈ ℝ)
135, 10, 12rspcdva 2881 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → ∀𝑦 ∈ ℝ DECID (ℜ‘𝑧) # 𝑦)
14 simprr 531 . . . . . . 7 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → 𝑤 ∈ ℂ)
1514recld 11220 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (ℜ‘𝑤) ∈ ℝ)
162, 13, 15rspcdva 2881 . . . . 5 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → DECID (ℜ‘𝑧) # (ℜ‘𝑤))
17 breq2 4047 . . . . . . 7 (𝑦 = (ℑ‘𝑤) → ((ℑ‘𝑧) # 𝑦 ↔ (ℑ‘𝑧) # (ℑ‘𝑤)))
1817dcbid 839 . . . . . 6 (𝑦 = (ℑ‘𝑤) → (DECID (ℑ‘𝑧) # 𝑦DECID (ℑ‘𝑧) # (ℑ‘𝑤)))
19 breq1 4046 . . . . . . . . 9 (𝑥 = (ℑ‘𝑧) → (𝑥 # 𝑦 ↔ (ℑ‘𝑧) # 𝑦))
2019dcbid 839 . . . . . . . 8 (𝑥 = (ℑ‘𝑧) → (DECID 𝑥 # 𝑦DECID (ℑ‘𝑧) # 𝑦))
2120ralbidv 2505 . . . . . . 7 (𝑥 = (ℑ‘𝑧) → (∀𝑦 ∈ ℝ DECID 𝑥 # 𝑦 ↔ ∀𝑦 ∈ ℝ DECID (ℑ‘𝑧) # 𝑦))
2211imcld 11221 . . . . . . 7 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (ℑ‘𝑧) ∈ ℝ)
2321, 10, 22rspcdva 2881 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → ∀𝑦 ∈ ℝ DECID (ℑ‘𝑧) # 𝑦)
2414imcld 11221 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (ℑ‘𝑤) ∈ ℝ)
2518, 23, 24rspcdva 2881 . . . . 5 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → DECID (ℑ‘𝑧) # (ℑ‘𝑤))
26 dcor 937 . . . . 5 (DECID (ℜ‘𝑧) # (ℜ‘𝑤) → (DECID (ℑ‘𝑧) # (ℑ‘𝑤) → DECID ((ℜ‘𝑧) # (ℜ‘𝑤) ∨ (ℑ‘𝑧) # (ℑ‘𝑤))))
2716, 25, 26sylc 62 . . . 4 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → DECID ((ℜ‘𝑧) # (ℜ‘𝑤) ∨ (ℑ‘𝑧) # (ℑ‘𝑤)))
28 cnreim 11260 . . . . . 6 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 # 𝑤 ↔ ((ℜ‘𝑧) # (ℜ‘𝑤) ∨ (ℑ‘𝑧) # (ℑ‘𝑤))))
2928dcbid 839 . . . . 5 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (DECID 𝑧 # 𝑤DECID ((ℜ‘𝑧) # (ℜ‘𝑤) ∨ (ℑ‘𝑧) # (ℑ‘𝑤))))
3029adantl 277 . . . 4 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (DECID 𝑧 # 𝑤DECID ((ℜ‘𝑧) # (ℜ‘𝑤) ∨ (ℑ‘𝑧) # (ℑ‘𝑤))))
3127, 30mpbird 167 . . 3 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → DECID 𝑧 # 𝑤)
3231ralrimivva 2587 . 2 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → ∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤)
33 breq2 4047 . . . . . 6 (𝑤 = 𝑦 → (𝑥 # 𝑤𝑥 # 𝑦))
3433dcbid 839 . . . . 5 (𝑤 = 𝑦 → (DECID 𝑥 # 𝑤DECID 𝑥 # 𝑦))
35 breq1 4046 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧 # 𝑤𝑥 # 𝑤))
3635dcbid 839 . . . . . . 7 (𝑧 = 𝑥 → (DECID 𝑧 # 𝑤DECID 𝑥 # 𝑤))
3736ralbidv 2505 . . . . . 6 (𝑧 = 𝑥 → (∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ↔ ∀𝑤 ∈ ℂ DECID 𝑥 # 𝑤))
38 simpl 109 . . . . . 6 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤)
39 simprl 529 . . . . . . 7 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
4039recnd 8100 . . . . . 6 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℂ)
4137, 38, 40rspcdva 2881 . . . . 5 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑤 ∈ ℂ DECID 𝑥 # 𝑤)
42 simprr 531 . . . . . 6 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
4342recnd 8100 . . . . 5 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℂ)
4434, 41, 43rspcdva 2881 . . . 4 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → DECID 𝑥 # 𝑦)
456adantl 277 . . . 4 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ DECID 𝑥 # 𝑦))
4644, 45mpbird 167 . . 3 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
4746ralrimivva 2587 . 2 (∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
4832, 47impbii 126 1 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wo 709  DECID wdc 835  w3o 979   = wceq 1372  wcel 2175  wral 2483   class class class wbr 4043  cfv 5270  cc 7922  cr 7923   < clt 8106   # cap 8653  cre 11122  cim 11123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-po 4342  df-iso 4343  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-2 9094  df-cj 11124  df-re 11125  df-im 11126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator