Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  cndcap GIF version

Theorem cndcap 16386
Description: Real number trichotomy is equivalent to decidability of complex number apartness. (Contributed by Jim Kingdon, 10-Apr-2025.)
Assertion
Ref Expression
cndcap (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤)
Distinct variable group:   𝑥,𝑤,𝑦,𝑧

Proof of Theorem cndcap
StepHypRef Expression
1 breq2 4086 . . . . . . 7 (𝑦 = (ℜ‘𝑤) → ((ℜ‘𝑧) # 𝑦 ↔ (ℜ‘𝑧) # (ℜ‘𝑤)))
21dcbid 843 . . . . . 6 (𝑦 = (ℜ‘𝑤) → (DECID (ℜ‘𝑧) # 𝑦DECID (ℜ‘𝑧) # (ℜ‘𝑤)))
3 breq1 4085 . . . . . . . . 9 (𝑥 = (ℜ‘𝑧) → (𝑥 # 𝑦 ↔ (ℜ‘𝑧) # 𝑦))
43dcbid 843 . . . . . . . 8 (𝑥 = (ℜ‘𝑧) → (DECID 𝑥 # 𝑦DECID (ℜ‘𝑧) # 𝑦))
54ralbidv 2530 . . . . . . 7 (𝑥 = (ℜ‘𝑧) → (∀𝑦 ∈ ℝ DECID 𝑥 # 𝑦 ↔ ∀𝑦 ∈ ℝ DECID (ℜ‘𝑧) # 𝑦))
6 triap 16356 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ DECID 𝑥 # 𝑦))
76ralbidva 2526 . . . . . . . . . 10 (𝑥 ∈ ℝ → (∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑦 ∈ ℝ DECID 𝑥 # 𝑦))
87ralbiia 2544 . . . . . . . . 9 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 # 𝑦)
98biimpi 120 . . . . . . . 8 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 # 𝑦)
109adantr 276 . . . . . . 7 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 # 𝑦)
11 simprl 529 . . . . . . . 8 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → 𝑧 ∈ ℂ)
1211recld 11444 . . . . . . 7 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (ℜ‘𝑧) ∈ ℝ)
135, 10, 12rspcdva 2912 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → ∀𝑦 ∈ ℝ DECID (ℜ‘𝑧) # 𝑦)
14 simprr 531 . . . . . . 7 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → 𝑤 ∈ ℂ)
1514recld 11444 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (ℜ‘𝑤) ∈ ℝ)
162, 13, 15rspcdva 2912 . . . . 5 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → DECID (ℜ‘𝑧) # (ℜ‘𝑤))
17 breq2 4086 . . . . . . 7 (𝑦 = (ℑ‘𝑤) → ((ℑ‘𝑧) # 𝑦 ↔ (ℑ‘𝑧) # (ℑ‘𝑤)))
1817dcbid 843 . . . . . 6 (𝑦 = (ℑ‘𝑤) → (DECID (ℑ‘𝑧) # 𝑦DECID (ℑ‘𝑧) # (ℑ‘𝑤)))
19 breq1 4085 . . . . . . . . 9 (𝑥 = (ℑ‘𝑧) → (𝑥 # 𝑦 ↔ (ℑ‘𝑧) # 𝑦))
2019dcbid 843 . . . . . . . 8 (𝑥 = (ℑ‘𝑧) → (DECID 𝑥 # 𝑦DECID (ℑ‘𝑧) # 𝑦))
2120ralbidv 2530 . . . . . . 7 (𝑥 = (ℑ‘𝑧) → (∀𝑦 ∈ ℝ DECID 𝑥 # 𝑦 ↔ ∀𝑦 ∈ ℝ DECID (ℑ‘𝑧) # 𝑦))
2211imcld 11445 . . . . . . 7 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (ℑ‘𝑧) ∈ ℝ)
2321, 10, 22rspcdva 2912 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → ∀𝑦 ∈ ℝ DECID (ℑ‘𝑧) # 𝑦)
2414imcld 11445 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (ℑ‘𝑤) ∈ ℝ)
2518, 23, 24rspcdva 2912 . . . . 5 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → DECID (ℑ‘𝑧) # (ℑ‘𝑤))
26 dcor 941 . . . . 5 (DECID (ℜ‘𝑧) # (ℜ‘𝑤) → (DECID (ℑ‘𝑧) # (ℑ‘𝑤) → DECID ((ℜ‘𝑧) # (ℜ‘𝑤) ∨ (ℑ‘𝑧) # (ℑ‘𝑤))))
2716, 25, 26sylc 62 . . . 4 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → DECID ((ℜ‘𝑧) # (ℜ‘𝑤) ∨ (ℑ‘𝑧) # (ℑ‘𝑤)))
28 cnreim 11484 . . . . . 6 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 # 𝑤 ↔ ((ℜ‘𝑧) # (ℜ‘𝑤) ∨ (ℑ‘𝑧) # (ℑ‘𝑤))))
2928dcbid 843 . . . . 5 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (DECID 𝑧 # 𝑤DECID ((ℜ‘𝑧) # (ℜ‘𝑤) ∨ (ℑ‘𝑧) # (ℑ‘𝑤))))
3029adantl 277 . . . 4 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (DECID 𝑧 # 𝑤DECID ((ℜ‘𝑧) # (ℜ‘𝑤) ∨ (ℑ‘𝑧) # (ℑ‘𝑤))))
3127, 30mpbird 167 . . 3 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → DECID 𝑧 # 𝑤)
3231ralrimivva 2612 . 2 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → ∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤)
33 breq2 4086 . . . . . 6 (𝑤 = 𝑦 → (𝑥 # 𝑤𝑥 # 𝑦))
3433dcbid 843 . . . . 5 (𝑤 = 𝑦 → (DECID 𝑥 # 𝑤DECID 𝑥 # 𝑦))
35 breq1 4085 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧 # 𝑤𝑥 # 𝑤))
3635dcbid 843 . . . . . . 7 (𝑧 = 𝑥 → (DECID 𝑧 # 𝑤DECID 𝑥 # 𝑤))
3736ralbidv 2530 . . . . . 6 (𝑧 = 𝑥 → (∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ↔ ∀𝑤 ∈ ℂ DECID 𝑥 # 𝑤))
38 simpl 109 . . . . . 6 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤)
39 simprl 529 . . . . . . 7 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
4039recnd 8171 . . . . . 6 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℂ)
4137, 38, 40rspcdva 2912 . . . . 5 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑤 ∈ ℂ DECID 𝑥 # 𝑤)
42 simprr 531 . . . . . 6 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
4342recnd 8171 . . . . 5 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℂ)
4434, 41, 43rspcdva 2912 . . . 4 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → DECID 𝑥 # 𝑦)
456adantl 277 . . . 4 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ DECID 𝑥 # 𝑦))
4644, 45mpbird 167 . . 3 ((∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
4746ralrimivva 2612 . 2 (∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
4832, 47impbii 126 1 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wo 713  DECID wdc 839  w3o 1001   = wceq 1395  wcel 2200  wral 2508   class class class wbr 4082  cfv 5317  cc 7993  cr 7994   < clt 8177   # cap 8724  cre 11346  cim 11347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-2 9165  df-cj 11348  df-re 11349  df-im 11350
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator