| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funcnv3 | GIF version | ||
| Description: A condition showing a class is single-rooted. (See funcnv 5358). (Contributed by NM, 26-May-2006.) |
| Ref | Expression |
|---|---|
| funcnv3 | ⊢ (Fun ◡𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrn2 4887 | . . . . . 6 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} | |
| 2 | 1 | abeq2i 2320 | . . . . 5 ⊢ (𝑦 ∈ ran 𝐴 ↔ ∃𝑥 𝑥𝐴𝑦) |
| 3 | 2 | biimpi 120 | . . . 4 ⊢ (𝑦 ∈ ran 𝐴 → ∃𝑥 𝑥𝐴𝑦) |
| 4 | 3 | biantrurd 305 | . . 3 ⊢ (𝑦 ∈ ran 𝐴 → (∃*𝑥 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦))) |
| 5 | 4 | ralbiia 2524 | . 2 ⊢ (∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦 ↔ ∀𝑦 ∈ ran 𝐴(∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦)) |
| 6 | funcnv 5358 | . 2 ⊢ (Fun ◡𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦) | |
| 7 | df-reu 2495 | . . . 4 ⊢ (∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦 ↔ ∃!𝑥(𝑥 ∈ dom 𝐴 ∧ 𝑥𝐴𝑦)) | |
| 8 | vex 2782 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 9 | vex 2782 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 10 | 8, 9 | breldm 4904 | . . . . . 6 ⊢ (𝑥𝐴𝑦 → 𝑥 ∈ dom 𝐴) |
| 11 | 10 | pm4.71ri 392 | . . . . 5 ⊢ (𝑥𝐴𝑦 ↔ (𝑥 ∈ dom 𝐴 ∧ 𝑥𝐴𝑦)) |
| 12 | 11 | eubii 2066 | . . . 4 ⊢ (∃!𝑥 𝑥𝐴𝑦 ↔ ∃!𝑥(𝑥 ∈ dom 𝐴 ∧ 𝑥𝐴𝑦)) |
| 13 | eu5 2105 | . . . 4 ⊢ (∃!𝑥 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦)) | |
| 14 | 7, 12, 13 | 3bitr2i 208 | . . 3 ⊢ (∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦)) |
| 15 | 14 | ralbii 2516 | . 2 ⊢ (∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦 ↔ ∀𝑦 ∈ ran 𝐴(∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦)) |
| 16 | 5, 6, 15 | 3bitr4i 212 | 1 ⊢ (Fun ◡𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1518 ∃!weu 2057 ∃*wmo 2058 ∈ wcel 2180 ∀wral 2488 ∃!wreu 2490 class class class wbr 4062 ◡ccnv 4695 dom cdm 4696 ran crn 4697 Fun wfun 5288 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-reu 2495 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-fun 5296 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |