Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funcnv3 | GIF version |
Description: A condition showing a class is single-rooted. (See funcnv 5259). (Contributed by NM, 26-May-2006.) |
Ref | Expression |
---|---|
funcnv3 | ⊢ (Fun ◡𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrn2 4799 | . . . . . 6 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} | |
2 | 1 | abeq2i 2281 | . . . . 5 ⊢ (𝑦 ∈ ran 𝐴 ↔ ∃𝑥 𝑥𝐴𝑦) |
3 | 2 | biimpi 119 | . . . 4 ⊢ (𝑦 ∈ ran 𝐴 → ∃𝑥 𝑥𝐴𝑦) |
4 | 3 | biantrurd 303 | . . 3 ⊢ (𝑦 ∈ ran 𝐴 → (∃*𝑥 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦))) |
5 | 4 | ralbiia 2484 | . 2 ⊢ (∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦 ↔ ∀𝑦 ∈ ran 𝐴(∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦)) |
6 | funcnv 5259 | . 2 ⊢ (Fun ◡𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦) | |
7 | df-reu 2455 | . . . 4 ⊢ (∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦 ↔ ∃!𝑥(𝑥 ∈ dom 𝐴 ∧ 𝑥𝐴𝑦)) | |
8 | vex 2733 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
9 | vex 2733 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
10 | 8, 9 | breldm 4815 | . . . . . 6 ⊢ (𝑥𝐴𝑦 → 𝑥 ∈ dom 𝐴) |
11 | 10 | pm4.71ri 390 | . . . . 5 ⊢ (𝑥𝐴𝑦 ↔ (𝑥 ∈ dom 𝐴 ∧ 𝑥𝐴𝑦)) |
12 | 11 | eubii 2028 | . . . 4 ⊢ (∃!𝑥 𝑥𝐴𝑦 ↔ ∃!𝑥(𝑥 ∈ dom 𝐴 ∧ 𝑥𝐴𝑦)) |
13 | eu5 2066 | . . . 4 ⊢ (∃!𝑥 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦)) | |
14 | 7, 12, 13 | 3bitr2i 207 | . . 3 ⊢ (∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦)) |
15 | 14 | ralbii 2476 | . 2 ⊢ (∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦 ↔ ∀𝑦 ∈ ran 𝐴(∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦)) |
16 | 5, 6, 15 | 3bitr4i 211 | 1 ⊢ (Fun ◡𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∃wex 1485 ∃!weu 2019 ∃*wmo 2020 ∈ wcel 2141 ∀wral 2448 ∃!wreu 2450 class class class wbr 3989 ◡ccnv 4610 dom cdm 4611 ran crn 4612 Fun wfun 5192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-fun 5200 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |