ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnv3 GIF version

Theorem funcnv3 5062
Description: A condition showing a class is single-rooted. (See funcnv 5061). (Contributed by NM, 26-May-2006.)
Assertion
Ref Expression
funcnv3 (Fun 𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem funcnv3
StepHypRef Expression
1 dfrn2 4612 . . . . . 6 ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
21abeq2i 2198 . . . . 5 (𝑦 ∈ ran 𝐴 ↔ ∃𝑥 𝑥𝐴𝑦)
32biimpi 118 . . . 4 (𝑦 ∈ ran 𝐴 → ∃𝑥 𝑥𝐴𝑦)
43biantrurd 299 . . 3 (𝑦 ∈ ran 𝐴 → (∃*𝑥 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦)))
54ralbiia 2392 . 2 (∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦 ↔ ∀𝑦 ∈ ran 𝐴(∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦))
6 funcnv 5061 . 2 (Fun 𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦)
7 df-reu 2366 . . . 4 (∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦 ↔ ∃!𝑥(𝑥 ∈ dom 𝐴𝑥𝐴𝑦))
8 vex 2622 . . . . . . 7 𝑥 ∈ V
9 vex 2622 . . . . . . 7 𝑦 ∈ V
108, 9breldm 4628 . . . . . 6 (𝑥𝐴𝑦𝑥 ∈ dom 𝐴)
1110pm4.71ri 384 . . . . 5 (𝑥𝐴𝑦 ↔ (𝑥 ∈ dom 𝐴𝑥𝐴𝑦))
1211eubii 1957 . . . 4 (∃!𝑥 𝑥𝐴𝑦 ↔ ∃!𝑥(𝑥 ∈ dom 𝐴𝑥𝐴𝑦))
13 eu5 1995 . . . 4 (∃!𝑥 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦))
147, 12, 133bitr2i 206 . . 3 (∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦))
1514ralbii 2384 . 2 (∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦 ↔ ∀𝑦 ∈ ran 𝐴(∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦))
165, 6, 153bitr4i 210 1 (Fun 𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦)
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103  wex 1426  wcel 1438  ∃!weu 1948  ∃*wmo 1949  wral 2359  ∃!wreu 2361   class class class wbr 3837  ccnv 4427  dom cdm 4428  ran crn 4429  Fun wfun 4996
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-reu 2366  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-fun 5004
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator