ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnv3 GIF version

Theorem funcnv3 5250
Description: A condition showing a class is single-rooted. (See funcnv 5249). (Contributed by NM, 26-May-2006.)
Assertion
Ref Expression
funcnv3 (Fun 𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem funcnv3
StepHypRef Expression
1 dfrn2 4792 . . . . . 6 ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
21abeq2i 2277 . . . . 5 (𝑦 ∈ ran 𝐴 ↔ ∃𝑥 𝑥𝐴𝑦)
32biimpi 119 . . . 4 (𝑦 ∈ ran 𝐴 → ∃𝑥 𝑥𝐴𝑦)
43biantrurd 303 . . 3 (𝑦 ∈ ran 𝐴 → (∃*𝑥 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦)))
54ralbiia 2480 . 2 (∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦 ↔ ∀𝑦 ∈ ran 𝐴(∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦))
6 funcnv 5249 . 2 (Fun 𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦)
7 df-reu 2451 . . . 4 (∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦 ↔ ∃!𝑥(𝑥 ∈ dom 𝐴𝑥𝐴𝑦))
8 vex 2729 . . . . . . 7 𝑥 ∈ V
9 vex 2729 . . . . . . 7 𝑦 ∈ V
108, 9breldm 4808 . . . . . 6 (𝑥𝐴𝑦𝑥 ∈ dom 𝐴)
1110pm4.71ri 390 . . . . 5 (𝑥𝐴𝑦 ↔ (𝑥 ∈ dom 𝐴𝑥𝐴𝑦))
1211eubii 2023 . . . 4 (∃!𝑥 𝑥𝐴𝑦 ↔ ∃!𝑥(𝑥 ∈ dom 𝐴𝑥𝐴𝑦))
13 eu5 2061 . . . 4 (∃!𝑥 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦))
147, 12, 133bitr2i 207 . . 3 (∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦))
1514ralbii 2472 . 2 (∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦 ↔ ∀𝑦 ∈ ran 𝐴(∃𝑥 𝑥𝐴𝑦 ∧ ∃*𝑥 𝑥𝐴𝑦))
165, 6, 153bitr4i 211 1 (Fun 𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wex 1480  ∃!weu 2014  ∃*wmo 2015  wcel 2136  wral 2444  ∃!wreu 2446   class class class wbr 3982  ccnv 4603  dom cdm 4604  ran crn 4605  Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator