| Step | Hyp | Ref
| Expression |
| 1 | | omsinds.2 |
. 2
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| 2 | | suceq 4437 |
. . . 4
⊢ (𝑤 = ∅ → suc 𝑤 = suc ∅) |
| 3 | 2 | raleqdv 2699 |
. . 3
⊢ (𝑤 = ∅ → (∀𝑥 ∈ suc 𝑤𝜑 ↔ ∀𝑥 ∈ suc ∅𝜑)) |
| 4 | | suceq 4437 |
. . . 4
⊢ (𝑤 = 𝑘 → suc 𝑤 = suc 𝑘) |
| 5 | 4 | raleqdv 2699 |
. . 3
⊢ (𝑤 = 𝑘 → (∀𝑥 ∈ suc 𝑤𝜑 ↔ ∀𝑥 ∈ suc 𝑘𝜑)) |
| 6 | | suceq 4437 |
. . . 4
⊢ (𝑤 = suc 𝑘 → suc 𝑤 = suc suc 𝑘) |
| 7 | 6 | raleqdv 2699 |
. . 3
⊢ (𝑤 = suc 𝑘 → (∀𝑥 ∈ suc 𝑤𝜑 ↔ ∀𝑥 ∈ suc suc 𝑘𝜑)) |
| 8 | | suceq 4437 |
. . . 4
⊢ (𝑤 = 𝐴 → suc 𝑤 = suc 𝐴) |
| 9 | 8 | raleqdv 2699 |
. . 3
⊢ (𝑤 = 𝐴 → (∀𝑥 ∈ suc 𝑤𝜑 ↔ ∀𝑥 ∈ suc 𝐴𝜑)) |
| 10 | | ral0 3552 |
. . . . . 6
⊢
∀𝑦 ∈
∅ 𝜓 |
| 11 | | omsinds.3 |
. . . . . . . 8
⊢ (𝑥 ∈ ω →
(∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) |
| 12 | 11 | rgen 2550 |
. . . . . . 7
⊢
∀𝑥 ∈
ω (∀𝑦 ∈
𝑥 𝜓 → 𝜑) |
| 13 | | peano1 4630 |
. . . . . . . 8
⊢ ∅
∈ ω |
| 14 | 10 | nfth 1478 |
. . . . . . . . . 10
⊢
Ⅎ𝑥∀𝑦 ∈ ∅ 𝜓 |
| 15 | | nfsbc1v 3008 |
. . . . . . . . . 10
⊢
Ⅎ𝑥[∅ / 𝑥]𝜑 |
| 16 | 14, 15 | nfim 1586 |
. . . . . . . . 9
⊢
Ⅎ𝑥(∀𝑦 ∈ ∅ 𝜓 → [∅ / 𝑥]𝜑) |
| 17 | | raleq 2693 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → (∀𝑦 ∈ 𝑥 𝜓 ↔ ∀𝑦 ∈ ∅ 𝜓)) |
| 18 | | sbceq1a 2999 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → (𝜑 ↔ [∅ / 𝑥]𝜑)) |
| 19 | 17, 18 | imbi12d 234 |
. . . . . . . . 9
⊢ (𝑥 = ∅ →
((∀𝑦 ∈ 𝑥 𝜓 → 𝜑) ↔ (∀𝑦 ∈ ∅ 𝜓 → [∅ / 𝑥]𝜑))) |
| 20 | 16, 19 | rspc 2862 |
. . . . . . . 8
⊢ (∅
∈ ω → (∀𝑥 ∈ ω (∀𝑦 ∈ 𝑥 𝜓 → 𝜑) → (∀𝑦 ∈ ∅ 𝜓 → [∅ / 𝑥]𝜑))) |
| 21 | 13, 20 | ax-mp 5 |
. . . . . . 7
⊢
(∀𝑥 ∈
ω (∀𝑦 ∈
𝑥 𝜓 → 𝜑) → (∀𝑦 ∈ ∅ 𝜓 → [∅ / 𝑥]𝜑)) |
| 22 | 12, 21 | ax-mp 5 |
. . . . . 6
⊢
(∀𝑦 ∈
∅ 𝜓 →
[∅ / 𝑥]𝜑) |
| 23 | 10, 22 | ax-mp 5 |
. . . . 5
⊢
[∅ / 𝑥]𝜑 |
| 24 | | ralsns 3660 |
. . . . . 6
⊢ (∅
∈ ω → (∀𝑥 ∈ {∅}𝜑 ↔ [∅ / 𝑥]𝜑)) |
| 25 | 13, 24 | ax-mp 5 |
. . . . 5
⊢
(∀𝑥 ∈
{∅}𝜑 ↔
[∅ / 𝑥]𝜑) |
| 26 | 23, 25 | mpbir 146 |
. . . 4
⊢
∀𝑥 ∈
{∅}𝜑 |
| 27 | | suc0 4446 |
. . . . 5
⊢ suc
∅ = {∅} |
| 28 | 27 | raleqi 2697 |
. . . 4
⊢
(∀𝑥 ∈
suc ∅𝜑 ↔
∀𝑥 ∈
{∅}𝜑) |
| 29 | 26, 28 | mpbir 146 |
. . 3
⊢
∀𝑥 ∈ suc
∅𝜑 |
| 30 | | simpr 110 |
. . . . . 6
⊢ ((𝑘 ∈ ω ∧
∀𝑥 ∈ suc 𝑘𝜑) → ∀𝑥 ∈ suc 𝑘𝜑) |
| 31 | | peano2 4631 |
. . . . . . . . 9
⊢ (𝑘 ∈ ω → suc 𝑘 ∈
ω) |
| 32 | 31 | adantr 276 |
. . . . . . . 8
⊢ ((𝑘 ∈ ω ∧
∀𝑥 ∈ suc 𝑘𝜑) → suc 𝑘 ∈ ω) |
| 33 | | omsinds.1 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| 34 | 33 | cbvralv 2729 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
suc 𝑘𝜑 ↔ ∀𝑦 ∈ suc 𝑘𝜓) |
| 35 | 30, 34 | sylib 122 |
. . . . . . . 8
⊢ ((𝑘 ∈ ω ∧
∀𝑥 ∈ suc 𝑘𝜑) → ∀𝑦 ∈ suc 𝑘𝜓) |
| 36 | | nfv 1542 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥∀𝑦 ∈ suc 𝑘𝜓 |
| 37 | | nfsbc1v 3008 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥[suc
𝑘 / 𝑥]𝜑 |
| 38 | 36, 37 | nfim 1586 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(∀𝑦 ∈ suc 𝑘𝜓 → [suc 𝑘 / 𝑥]𝜑) |
| 39 | | raleq 2693 |
. . . . . . . . . . 11
⊢ (𝑥 = suc 𝑘 → (∀𝑦 ∈ 𝑥 𝜓 ↔ ∀𝑦 ∈ suc 𝑘𝜓)) |
| 40 | | sbceq1a 2999 |
. . . . . . . . . . 11
⊢ (𝑥 = suc 𝑘 → (𝜑 ↔ [suc 𝑘 / 𝑥]𝜑)) |
| 41 | 39, 40 | imbi12d 234 |
. . . . . . . . . 10
⊢ (𝑥 = suc 𝑘 → ((∀𝑦 ∈ 𝑥 𝜓 → 𝜑) ↔ (∀𝑦 ∈ suc 𝑘𝜓 → [suc 𝑘 / 𝑥]𝜑))) |
| 42 | 38, 41 | rspc 2862 |
. . . . . . . . 9
⊢ (suc
𝑘 ∈ ω →
(∀𝑥 ∈ ω
(∀𝑦 ∈ 𝑥 𝜓 → 𝜑) → (∀𝑦 ∈ suc 𝑘𝜓 → [suc 𝑘 / 𝑥]𝜑))) |
| 43 | 12, 42 | mpi 15 |
. . . . . . . 8
⊢ (suc
𝑘 ∈ ω →
(∀𝑦 ∈ suc 𝑘𝜓 → [suc 𝑘 / 𝑥]𝜑)) |
| 44 | 32, 35, 43 | sylc 62 |
. . . . . . 7
⊢ ((𝑘 ∈ ω ∧
∀𝑥 ∈ suc 𝑘𝜑) → [suc 𝑘 / 𝑥]𝜑) |
| 45 | | ralsns 3660 |
. . . . . . . 8
⊢ (suc
𝑘 ∈ ω →
(∀𝑥 ∈ {suc
𝑘}𝜑 ↔ [suc 𝑘 / 𝑥]𝜑)) |
| 46 | 32, 45 | syl 14 |
. . . . . . 7
⊢ ((𝑘 ∈ ω ∧
∀𝑥 ∈ suc 𝑘𝜑) → (∀𝑥 ∈ {suc 𝑘}𝜑 ↔ [suc 𝑘 / 𝑥]𝜑)) |
| 47 | 44, 46 | mpbird 167 |
. . . . . 6
⊢ ((𝑘 ∈ ω ∧
∀𝑥 ∈ suc 𝑘𝜑) → ∀𝑥 ∈ {suc 𝑘}𝜑) |
| 48 | | ralun 3345 |
. . . . . 6
⊢
((∀𝑥 ∈
suc 𝑘𝜑 ∧ ∀𝑥 ∈ {suc 𝑘}𝜑) → ∀𝑥 ∈ (suc 𝑘 ∪ {suc 𝑘})𝜑) |
| 49 | 30, 47, 48 | syl2anc 411 |
. . . . 5
⊢ ((𝑘 ∈ ω ∧
∀𝑥 ∈ suc 𝑘𝜑) → ∀𝑥 ∈ (suc 𝑘 ∪ {suc 𝑘})𝜑) |
| 50 | | df-suc 4406 |
. . . . . . 7
⊢ suc suc
𝑘 = (suc 𝑘 ∪ {suc 𝑘}) |
| 51 | 50 | a1i 9 |
. . . . . 6
⊢ ((𝑘 ∈ ω ∧
∀𝑥 ∈ suc 𝑘𝜑) → suc suc 𝑘 = (suc 𝑘 ∪ {suc 𝑘})) |
| 52 | 51 | raleqdv 2699 |
. . . . 5
⊢ ((𝑘 ∈ ω ∧
∀𝑥 ∈ suc 𝑘𝜑) → (∀𝑥 ∈ suc suc 𝑘𝜑 ↔ ∀𝑥 ∈ (suc 𝑘 ∪ {suc 𝑘})𝜑)) |
| 53 | 49, 52 | mpbird 167 |
. . . 4
⊢ ((𝑘 ∈ ω ∧
∀𝑥 ∈ suc 𝑘𝜑) → ∀𝑥 ∈ suc suc 𝑘𝜑) |
| 54 | 53 | ex 115 |
. . 3
⊢ (𝑘 ∈ ω →
(∀𝑥 ∈ suc 𝑘𝜑 → ∀𝑥 ∈ suc suc 𝑘𝜑)) |
| 55 | 3, 5, 7, 9, 29, 54 | finds 4636 |
. 2
⊢ (𝐴 ∈ ω →
∀𝑥 ∈ suc 𝐴𝜑) |
| 56 | | sucidg 4451 |
. 2
⊢ (𝐴 ∈ ω → 𝐴 ∈ suc 𝐴) |
| 57 | 1, 55, 56 | rspcdva 2873 |
1
⊢ (𝐴 ∈ ω → 𝜒) |