Step | Hyp | Ref
| Expression |
1 | | omsinds.2 |
. 2
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
2 | | suceq 4380 |
. . . 4
⊢ (𝑤 = ∅ → suc 𝑤 = suc ∅) |
3 | 2 | raleqdv 2667 |
. . 3
⊢ (𝑤 = ∅ → (∀𝑥 ∈ suc 𝑤𝜑 ↔ ∀𝑥 ∈ suc ∅𝜑)) |
4 | | suceq 4380 |
. . . 4
⊢ (𝑤 = 𝑘 → suc 𝑤 = suc 𝑘) |
5 | 4 | raleqdv 2667 |
. . 3
⊢ (𝑤 = 𝑘 → (∀𝑥 ∈ suc 𝑤𝜑 ↔ ∀𝑥 ∈ suc 𝑘𝜑)) |
6 | | suceq 4380 |
. . . 4
⊢ (𝑤 = suc 𝑘 → suc 𝑤 = suc suc 𝑘) |
7 | 6 | raleqdv 2667 |
. . 3
⊢ (𝑤 = suc 𝑘 → (∀𝑥 ∈ suc 𝑤𝜑 ↔ ∀𝑥 ∈ suc suc 𝑘𝜑)) |
8 | | suceq 4380 |
. . . 4
⊢ (𝑤 = 𝐴 → suc 𝑤 = suc 𝐴) |
9 | 8 | raleqdv 2667 |
. . 3
⊢ (𝑤 = 𝐴 → (∀𝑥 ∈ suc 𝑤𝜑 ↔ ∀𝑥 ∈ suc 𝐴𝜑)) |
10 | | ral0 3510 |
. . . . . 6
⊢
∀𝑦 ∈
∅ 𝜓 |
11 | | omsinds.3 |
. . . . . . . 8
⊢ (𝑥 ∈ ω →
(∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) |
12 | 11 | rgen 2519 |
. . . . . . 7
⊢
∀𝑥 ∈
ω (∀𝑦 ∈
𝑥 𝜓 → 𝜑) |
13 | | peano1 4571 |
. . . . . . . 8
⊢ ∅
∈ ω |
14 | 10 | nfth 1452 |
. . . . . . . . . 10
⊢
Ⅎ𝑥∀𝑦 ∈ ∅ 𝜓 |
15 | | nfsbc1v 2969 |
. . . . . . . . . 10
⊢
Ⅎ𝑥[∅ / 𝑥]𝜑 |
16 | 14, 15 | nfim 1560 |
. . . . . . . . 9
⊢
Ⅎ𝑥(∀𝑦 ∈ ∅ 𝜓 → [∅ / 𝑥]𝜑) |
17 | | raleq 2661 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → (∀𝑦 ∈ 𝑥 𝜓 ↔ ∀𝑦 ∈ ∅ 𝜓)) |
18 | | sbceq1a 2960 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → (𝜑 ↔ [∅ / 𝑥]𝜑)) |
19 | 17, 18 | imbi12d 233 |
. . . . . . . . 9
⊢ (𝑥 = ∅ →
((∀𝑦 ∈ 𝑥 𝜓 → 𝜑) ↔ (∀𝑦 ∈ ∅ 𝜓 → [∅ / 𝑥]𝜑))) |
20 | 16, 19 | rspc 2824 |
. . . . . . . 8
⊢ (∅
∈ ω → (∀𝑥 ∈ ω (∀𝑦 ∈ 𝑥 𝜓 → 𝜑) → (∀𝑦 ∈ ∅ 𝜓 → [∅ / 𝑥]𝜑))) |
21 | 13, 20 | ax-mp 5 |
. . . . . . 7
⊢
(∀𝑥 ∈
ω (∀𝑦 ∈
𝑥 𝜓 → 𝜑) → (∀𝑦 ∈ ∅ 𝜓 → [∅ / 𝑥]𝜑)) |
22 | 12, 21 | ax-mp 5 |
. . . . . 6
⊢
(∀𝑦 ∈
∅ 𝜓 →
[∅ / 𝑥]𝜑) |
23 | 10, 22 | ax-mp 5 |
. . . . 5
⊢
[∅ / 𝑥]𝜑 |
24 | | ralsns 3614 |
. . . . . 6
⊢ (∅
∈ ω → (∀𝑥 ∈ {∅}𝜑 ↔ [∅ / 𝑥]𝜑)) |
25 | 13, 24 | ax-mp 5 |
. . . . 5
⊢
(∀𝑥 ∈
{∅}𝜑 ↔
[∅ / 𝑥]𝜑) |
26 | 23, 25 | mpbir 145 |
. . . 4
⊢
∀𝑥 ∈
{∅}𝜑 |
27 | | suc0 4389 |
. . . . 5
⊢ suc
∅ = {∅} |
28 | 27 | raleqi 2665 |
. . . 4
⊢
(∀𝑥 ∈
suc ∅𝜑 ↔
∀𝑥 ∈
{∅}𝜑) |
29 | 26, 28 | mpbir 145 |
. . 3
⊢
∀𝑥 ∈ suc
∅𝜑 |
30 | | simpr 109 |
. . . . . 6
⊢ ((𝑘 ∈ ω ∧
∀𝑥 ∈ suc 𝑘𝜑) → ∀𝑥 ∈ suc 𝑘𝜑) |
31 | | peano2 4572 |
. . . . . . . . 9
⊢ (𝑘 ∈ ω → suc 𝑘 ∈
ω) |
32 | 31 | adantr 274 |
. . . . . . . 8
⊢ ((𝑘 ∈ ω ∧
∀𝑥 ∈ suc 𝑘𝜑) → suc 𝑘 ∈ ω) |
33 | | omsinds.1 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
34 | 33 | cbvralv 2692 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
suc 𝑘𝜑 ↔ ∀𝑦 ∈ suc 𝑘𝜓) |
35 | 30, 34 | sylib 121 |
. . . . . . . 8
⊢ ((𝑘 ∈ ω ∧
∀𝑥 ∈ suc 𝑘𝜑) → ∀𝑦 ∈ suc 𝑘𝜓) |
36 | | nfv 1516 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥∀𝑦 ∈ suc 𝑘𝜓 |
37 | | nfsbc1v 2969 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥[suc
𝑘 / 𝑥]𝜑 |
38 | 36, 37 | nfim 1560 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(∀𝑦 ∈ suc 𝑘𝜓 → [suc 𝑘 / 𝑥]𝜑) |
39 | | raleq 2661 |
. . . . . . . . . . 11
⊢ (𝑥 = suc 𝑘 → (∀𝑦 ∈ 𝑥 𝜓 ↔ ∀𝑦 ∈ suc 𝑘𝜓)) |
40 | | sbceq1a 2960 |
. . . . . . . . . . 11
⊢ (𝑥 = suc 𝑘 → (𝜑 ↔ [suc 𝑘 / 𝑥]𝜑)) |
41 | 39, 40 | imbi12d 233 |
. . . . . . . . . 10
⊢ (𝑥 = suc 𝑘 → ((∀𝑦 ∈ 𝑥 𝜓 → 𝜑) ↔ (∀𝑦 ∈ suc 𝑘𝜓 → [suc 𝑘 / 𝑥]𝜑))) |
42 | 38, 41 | rspc 2824 |
. . . . . . . . 9
⊢ (suc
𝑘 ∈ ω →
(∀𝑥 ∈ ω
(∀𝑦 ∈ 𝑥 𝜓 → 𝜑) → (∀𝑦 ∈ suc 𝑘𝜓 → [suc 𝑘 / 𝑥]𝜑))) |
43 | 12, 42 | mpi 15 |
. . . . . . . 8
⊢ (suc
𝑘 ∈ ω →
(∀𝑦 ∈ suc 𝑘𝜓 → [suc 𝑘 / 𝑥]𝜑)) |
44 | 32, 35, 43 | sylc 62 |
. . . . . . 7
⊢ ((𝑘 ∈ ω ∧
∀𝑥 ∈ suc 𝑘𝜑) → [suc 𝑘 / 𝑥]𝜑) |
45 | | ralsns 3614 |
. . . . . . . 8
⊢ (suc
𝑘 ∈ ω →
(∀𝑥 ∈ {suc
𝑘}𝜑 ↔ [suc 𝑘 / 𝑥]𝜑)) |
46 | 32, 45 | syl 14 |
. . . . . . 7
⊢ ((𝑘 ∈ ω ∧
∀𝑥 ∈ suc 𝑘𝜑) → (∀𝑥 ∈ {suc 𝑘}𝜑 ↔ [suc 𝑘 / 𝑥]𝜑)) |
47 | 44, 46 | mpbird 166 |
. . . . . 6
⊢ ((𝑘 ∈ ω ∧
∀𝑥 ∈ suc 𝑘𝜑) → ∀𝑥 ∈ {suc 𝑘}𝜑) |
48 | | ralun 3304 |
. . . . . 6
⊢
((∀𝑥 ∈
suc 𝑘𝜑 ∧ ∀𝑥 ∈ {suc 𝑘}𝜑) → ∀𝑥 ∈ (suc 𝑘 ∪ {suc 𝑘})𝜑) |
49 | 30, 47, 48 | syl2anc 409 |
. . . . 5
⊢ ((𝑘 ∈ ω ∧
∀𝑥 ∈ suc 𝑘𝜑) → ∀𝑥 ∈ (suc 𝑘 ∪ {suc 𝑘})𝜑) |
50 | | df-suc 4349 |
. . . . . . 7
⊢ suc suc
𝑘 = (suc 𝑘 ∪ {suc 𝑘}) |
51 | 50 | a1i 9 |
. . . . . 6
⊢ ((𝑘 ∈ ω ∧
∀𝑥 ∈ suc 𝑘𝜑) → suc suc 𝑘 = (suc 𝑘 ∪ {suc 𝑘})) |
52 | 51 | raleqdv 2667 |
. . . . 5
⊢ ((𝑘 ∈ ω ∧
∀𝑥 ∈ suc 𝑘𝜑) → (∀𝑥 ∈ suc suc 𝑘𝜑 ↔ ∀𝑥 ∈ (suc 𝑘 ∪ {suc 𝑘})𝜑)) |
53 | 49, 52 | mpbird 166 |
. . . 4
⊢ ((𝑘 ∈ ω ∧
∀𝑥 ∈ suc 𝑘𝜑) → ∀𝑥 ∈ suc suc 𝑘𝜑) |
54 | 53 | ex 114 |
. . 3
⊢ (𝑘 ∈ ω →
(∀𝑥 ∈ suc 𝑘𝜑 → ∀𝑥 ∈ suc suc 𝑘𝜑)) |
55 | 3, 5, 7, 9, 29, 54 | finds 4577 |
. 2
⊢ (𝐴 ∈ ω →
∀𝑥 ∈ suc 𝐴𝜑) |
56 | | sucidg 4394 |
. 2
⊢ (𝐴 ∈ ω → 𝐴 ∈ suc 𝐴) |
57 | 1, 55, 56 | rspcdva 2835 |
1
⊢ (𝐴 ∈ ω → 𝜒) |