Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralima | GIF version |
Description: Universal quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
Ref | Expression |
---|---|
rexima.x | ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralima | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel2 3137 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐴) | |
2 | funfvex 5503 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹) → (𝐹‘𝑦) ∈ V) | |
3 | 2 | funfni 5288 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ V) |
4 | 1, 3 | sylan2 284 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘𝑦) ∈ V) |
5 | 4 | anassrs 398 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝐹‘𝑦) ∈ V) |
6 | fvelimab 5542 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑥 ∈ (𝐹 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥)) | |
7 | eqcom 2167 | . . . 4 ⊢ ((𝐹‘𝑦) = 𝑥 ↔ 𝑥 = (𝐹‘𝑦)) | |
8 | 7 | rexbii 2473 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦)) |
9 | 6, 8 | bitrdi 195 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑥 ∈ (𝐹 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦))) |
10 | rexima.x | . . 3 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) | |
11 | 10 | adantl 275 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 = (𝐹‘𝑦)) → (𝜑 ↔ 𝜓)) |
12 | 5, 9, 11 | ralxfr2d 4442 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ∃wrex 2445 Vcvv 2726 ⊆ wss 3116 “ cima 4607 Fn wfn 5183 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 |
This theorem is referenced by: supisolem 6973 qtopbasss 13161 |
Copyright terms: Public domain | W3C validator |