ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralima GIF version

Theorem ralima 5724
Description: Universal quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Hypothesis
Ref Expression
rexima.x (𝑥 = (𝐹𝑦) → (𝜑𝜓))
Assertion
Ref Expression
ralima ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∀𝑦𝐵 𝜓))
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝐹,𝑦   𝑥,𝐵,𝑦   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem ralima
StepHypRef Expression
1 ssel2 3137 . . . 4 ((𝐵𝐴𝑦𝐵) → 𝑦𝐴)
2 funfvex 5503 . . . . 5 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝐹𝑦) ∈ V)
32funfni 5288 . . . 4 ((𝐹 Fn 𝐴𝑦𝐴) → (𝐹𝑦) ∈ V)
41, 3sylan2 284 . . 3 ((𝐹 Fn 𝐴 ∧ (𝐵𝐴𝑦𝐵)) → (𝐹𝑦) ∈ V)
54anassrs 398 . 2 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝑦𝐵) → (𝐹𝑦) ∈ V)
6 fvelimab 5542 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑥 ∈ (𝐹𝐵) ↔ ∃𝑦𝐵 (𝐹𝑦) = 𝑥))
7 eqcom 2167 . . . 4 ((𝐹𝑦) = 𝑥𝑥 = (𝐹𝑦))
87rexbii 2473 . . 3 (∃𝑦𝐵 (𝐹𝑦) = 𝑥 ↔ ∃𝑦𝐵 𝑥 = (𝐹𝑦))
96, 8bitrdi 195 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑥 ∈ (𝐹𝐵) ↔ ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
10 rexima.x . . 3 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
1110adantl 275 . 2 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝑥 = (𝐹𝑦)) → (𝜑𝜓))
125, 9, 11ralxfr2d 4442 1 ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∀𝑦𝐵 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wral 2444  wrex 2445  Vcvv 2726  wss 3116  cima 4607   Fn wfn 5183  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by:  supisolem  6973  qtopbasss  13161
  Copyright terms: Public domain W3C validator