ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralima GIF version

Theorem ralima 5758
Description: Universal quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Hypothesis
Ref Expression
rexima.x (𝑥 = (𝐹𝑦) → (𝜑𝜓))
Assertion
Ref Expression
ralima ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∀𝑦𝐵 𝜓))
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝐹,𝑦   𝑥,𝐵,𝑦   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem ralima
StepHypRef Expression
1 ssel2 3152 . . . 4 ((𝐵𝐴𝑦𝐵) → 𝑦𝐴)
2 funfvex 5534 . . . . 5 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝐹𝑦) ∈ V)
32funfni 5318 . . . 4 ((𝐹 Fn 𝐴𝑦𝐴) → (𝐹𝑦) ∈ V)
41, 3sylan2 286 . . 3 ((𝐹 Fn 𝐴 ∧ (𝐵𝐴𝑦𝐵)) → (𝐹𝑦) ∈ V)
54anassrs 400 . 2 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝑦𝐵) → (𝐹𝑦) ∈ V)
6 fvelimab 5574 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑥 ∈ (𝐹𝐵) ↔ ∃𝑦𝐵 (𝐹𝑦) = 𝑥))
7 eqcom 2179 . . . 4 ((𝐹𝑦) = 𝑥𝑥 = (𝐹𝑦))
87rexbii 2484 . . 3 (∃𝑦𝐵 (𝐹𝑦) = 𝑥 ↔ ∃𝑦𝐵 𝑥 = (𝐹𝑦))
96, 8bitrdi 196 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑥 ∈ (𝐹𝐵) ↔ ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
10 rexima.x . . 3 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
1110adantl 277 . 2 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝑥 = (𝐹𝑦)) → (𝜑𝜓))
125, 9, 11ralxfr2d 4466 1 ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∀𝑦𝐵 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wral 2455  wrex 2456  Vcvv 2739  wss 3131  cima 4631   Fn wfn 5213  cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226
This theorem is referenced by:  supisolem  7009  mhmima  12880  qtopbasss  14106
  Copyright terms: Public domain W3C validator