Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lmreltop | GIF version |
Description: The topological space convergence relation is a relation. (Contributed by Jim Kingdon, 25-Mar-2023.) |
Ref | Expression |
---|---|
lmreltop | ⊢ (𝐽 ∈ Top → Rel (⇝𝑡‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopab 4731 | . 2 ⊢ Rel {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝐽 ↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))} | |
2 | toptopon2 12657 | . . . 4 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
3 | lmfval 12832 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (⇝𝑡‘𝐽) = {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝐽 ↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) | |
4 | 2, 3 | sylbi 120 | . . 3 ⊢ (𝐽 ∈ Top → (⇝𝑡‘𝐽) = {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝐽 ↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) |
5 | 4 | releqd 4688 | . 2 ⊢ (𝐽 ∈ Top → (Rel (⇝𝑡‘𝐽) ↔ Rel {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝐽 ↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))})) |
6 | 1, 5 | mpbiri 167 | 1 ⊢ (𝐽 ∈ Top → Rel (⇝𝑡‘𝐽)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ∃wrex 2445 ∪ cuni 3789 {copab 4042 ran crn 4605 ↾ cres 4606 Rel wrel 4609 ⟶wf 5184 ‘cfv 5188 (class class class)co 5842 ↑pm cpm 6615 ℂcc 7751 ℤ≥cuz 9466 Topctop 12635 TopOnctopon 12648 ⇝𝑡clm 12827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-cnex 7844 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pm 6617 df-top 12636 df-topon 12649 df-lm 12830 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |