![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lmreltop | GIF version |
Description: The topological space convergence relation is a relation. (Contributed by Jim Kingdon, 25-Mar-2023.) |
Ref | Expression |
---|---|
lmreltop | β’ (π½ β Top β Rel (βπ‘βπ½)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopab 4755 | . 2 β’ Rel {β¨π, π₯β© β£ (π β (βͺ π½ βpm β) β§ π₯ β βͺ π½ β§ βπ’ β π½ (π₯ β π’ β βπ¦ β ran β€β₯(π βΎ π¦):π¦βΆπ’))} | |
2 | toptopon2 13659 | . . . 4 β’ (π½ β Top β π½ β (TopOnββͺ π½)) | |
3 | lmfval 13832 | . . . 4 β’ (π½ β (TopOnββͺ π½) β (βπ‘βπ½) = {β¨π, π₯β© β£ (π β (βͺ π½ βpm β) β§ π₯ β βͺ π½ β§ βπ’ β π½ (π₯ β π’ β βπ¦ β ran β€β₯(π βΎ π¦):π¦βΆπ’))}) | |
4 | 2, 3 | sylbi 121 | . . 3 β’ (π½ β Top β (βπ‘βπ½) = {β¨π, π₯β© β£ (π β (βͺ π½ βpm β) β§ π₯ β βͺ π½ β§ βπ’ β π½ (π₯ β π’ β βπ¦ β ran β€β₯(π βΎ π¦):π¦βΆπ’))}) |
5 | 4 | releqd 4712 | . 2 β’ (π½ β Top β (Rel (βπ‘βπ½) β Rel {β¨π, π₯β© β£ (π β (βͺ π½ βpm β) β§ π₯ β βͺ π½ β§ βπ’ β π½ (π₯ β π’ β βπ¦ β ran β€β₯(π βΎ π¦):π¦βΆπ’))})) |
6 | 1, 5 | mpbiri 168 | 1 β’ (π½ β Top β Rel (βπ‘βπ½)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ w3a 978 = wceq 1353 β wcel 2148 βwral 2455 βwrex 2456 βͺ cuni 3811 {copab 4065 ran crn 4629 βΎ cres 4630 Rel wrel 4633 βΆwf 5214 βcfv 5218 (class class class)co 5878 βpm cpm 6652 βcc 7812 β€β₯cuz 9531 Topctop 13637 TopOnctopon 13650 βπ‘clm 13827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-cnex 7905 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-pm 6654 df-top 13638 df-topon 13651 df-lm 13830 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |