| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > lmreltop | GIF version | ||
| Description: The topological space convergence relation is a relation. (Contributed by Jim Kingdon, 25-Mar-2023.) | 
| Ref | Expression | 
|---|---|
| lmreltop | ⊢ (𝐽 ∈ Top → Rel (⇝𝑡‘𝐽)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | relopab 4792 | . 2 ⊢ Rel {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝐽 ↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))} | |
| 2 | toptopon2 14255 | . . . 4 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
| 3 | lmfval 14428 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (⇝𝑡‘𝐽) = {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝐽 ↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) | |
| 4 | 2, 3 | sylbi 121 | . . 3 ⊢ (𝐽 ∈ Top → (⇝𝑡‘𝐽) = {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝐽 ↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) | 
| 5 | 4 | releqd 4747 | . 2 ⊢ (𝐽 ∈ Top → (Rel (⇝𝑡‘𝐽) ↔ Rel {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝐽 ↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))})) | 
| 6 | 1, 5 | mpbiri 168 | 1 ⊢ (𝐽 ∈ Top → Rel (⇝𝑡‘𝐽)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 ∪ cuni 3839 {copab 4093 ran crn 4664 ↾ cres 4665 Rel wrel 4668 ⟶wf 5254 ‘cfv 5258 (class class class)co 5922 ↑pm cpm 6708 ℂcc 7877 ℤ≥cuz 9601 Topctop 14233 TopOnctopon 14246 ⇝𝑡clm 14423 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pm 6710 df-top 14234 df-topon 14247 df-lm 14426 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |