| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmreltop | GIF version | ||
| Description: The topological space convergence relation is a relation. (Contributed by Jim Kingdon, 25-Mar-2023.) |
| Ref | Expression |
|---|---|
| lmreltop | ⊢ (𝐽 ∈ Top → Rel (⇝𝑡‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopab 4802 | . 2 ⊢ Rel {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝐽 ↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))} | |
| 2 | toptopon2 14409 | . . . 4 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
| 3 | lmfval 14582 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (⇝𝑡‘𝐽) = {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝐽 ↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) | |
| 4 | 2, 3 | sylbi 121 | . . 3 ⊢ (𝐽 ∈ Top → (⇝𝑡‘𝐽) = {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝐽 ↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) |
| 5 | 4 | releqd 4757 | . 2 ⊢ (𝐽 ∈ Top → (Rel (⇝𝑡‘𝐽) ↔ Rel {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝐽 ↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))})) |
| 6 | 1, 5 | mpbiri 168 | 1 ⊢ (𝐽 ∈ Top → Rel (⇝𝑡‘𝐽)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 ∀wral 2483 ∃wrex 2484 ∪ cuni 3849 {copab 4103 ran crn 4674 ↾ cres 4675 Rel wrel 4678 ⟶wf 5264 ‘cfv 5268 (class class class)co 5934 ↑pm cpm 6726 ℂcc 7905 ℤ≥cuz 9630 Topctop 14387 TopOnctopon 14400 ⇝𝑡clm 14577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-cnex 7998 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-fv 5276 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-pm 6728 df-top 14388 df-topon 14401 df-lm 14580 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |