ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmreltop GIF version

Theorem lmreltop 14372
Description: The topological space convergence relation is a relation. (Contributed by Jim Kingdon, 25-Mar-2023.)
Assertion
Ref Expression
lmreltop (𝐽 ∈ Top → Rel (⇝𝑡𝐽))

Proof of Theorem lmreltop
Dummy variables 𝑓 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 4789 . 2 Rel {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝐽pm ℂ) ∧ 𝑥 𝐽 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))}
2 toptopon2 14198 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
3 lmfval 14371 . . . 4 (𝐽 ∈ (TopOn‘ 𝐽) → (⇝𝑡𝐽) = {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝐽pm ℂ) ∧ 𝑥 𝐽 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
42, 3sylbi 121 . . 3 (𝐽 ∈ Top → (⇝𝑡𝐽) = {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝐽pm ℂ) ∧ 𝑥 𝐽 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
54releqd 4744 . 2 (𝐽 ∈ Top → (Rel (⇝𝑡𝐽) ↔ Rel {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝐽pm ℂ) ∧ 𝑥 𝐽 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))}))
61, 5mpbiri 168 1 (𝐽 ∈ Top → Rel (⇝𝑡𝐽))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2164  wral 2472  wrex 2473   cuni 3836  {copab 4090  ran crn 4661  cres 4662  Rel wrel 4665  wf 5251  cfv 5255  (class class class)co 5919  pm cpm 6705  cc 7872  cuz 9595  Topctop 14176  TopOnctopon 14189  𝑡clm 14366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pm 6707  df-top 14177  df-topon 14190  df-lm 14369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator