ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releqgg GIF version

Theorem releqgg 13752
Description: The left coset equivalence relation is a relation. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypothesis
Ref Expression
releqg.r 𝑅 = (𝐺 ~QG 𝑆)
Assertion
Ref Expression
releqgg ((𝐺𝑉𝑆𝑊) → Rel 𝑅)

Proof of Theorem releqgg
Dummy variables 𝑖 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 4847 . 2 Rel {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)}
2 releqg.r . . . 4 𝑅 = (𝐺 ~QG 𝑆)
3 elex 2811 . . . . . 6 (𝐺𝑉𝐺 ∈ V)
43adantr 276 . . . . 5 ((𝐺𝑉𝑆𝑊) → 𝐺 ∈ V)
5 elex 2811 . . . . . 6 (𝑆𝑊𝑆 ∈ V)
65adantl 277 . . . . 5 ((𝐺𝑉𝑆𝑊) → 𝑆 ∈ V)
7 vex 2802 . . . . . . . . 9 𝑥 ∈ V
8 vex 2802 . . . . . . . . 9 𝑦 ∈ V
97, 8prss 3823 . . . . . . . 8 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ↔ {𝑥, 𝑦} ⊆ (Base‘𝐺))
109anbi1i 458 . . . . . . 7 (((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆) ↔ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆))
1110opabbii 4150 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)}
12 basfn 13086 . . . . . . . . 9 Base Fn V
13 funfvex 5643 . . . . . . . . . 10 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
1413funfni 5422 . . . . . . . . 9 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
1512, 4, 14sylancr 414 . . . . . . . 8 ((𝐺𝑉𝑆𝑊) → (Base‘𝐺) ∈ V)
16 xpexg 4832 . . . . . . . 8 (((Base‘𝐺) ∈ V ∧ (Base‘𝐺) ∈ V) → ((Base‘𝐺) × (Base‘𝐺)) ∈ V)
1715, 15, 16syl2anc 411 . . . . . . 7 ((𝐺𝑉𝑆𝑊) → ((Base‘𝐺) × (Base‘𝐺)) ∈ V)
18 opabssxp 4792 . . . . . . . 8 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)} ⊆ ((Base‘𝐺) × (Base‘𝐺))
1918a1i 9 . . . . . . 7 ((𝐺𝑉𝑆𝑊) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)} ⊆ ((Base‘𝐺) × (Base‘𝐺)))
2017, 19ssexd 4223 . . . . . 6 ((𝐺𝑉𝑆𝑊) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)} ∈ V)
2111, 20eqeltrrid 2317 . . . . 5 ((𝐺𝑉𝑆𝑊) → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)} ∈ V)
22 fveq2 5626 . . . . . . . . 9 (𝑟 = 𝐺 → (Base‘𝑟) = (Base‘𝐺))
2322sseq2d 3254 . . . . . . . 8 (𝑟 = 𝐺 → ({𝑥, 𝑦} ⊆ (Base‘𝑟) ↔ {𝑥, 𝑦} ⊆ (Base‘𝐺)))
24 fveq2 5626 . . . . . . . . . 10 (𝑟 = 𝐺 → (+g𝑟) = (+g𝐺))
25 fveq2 5626 . . . . . . . . . . 11 (𝑟 = 𝐺 → (invg𝑟) = (invg𝐺))
2625fveq1d 5628 . . . . . . . . . 10 (𝑟 = 𝐺 → ((invg𝑟)‘𝑥) = ((invg𝐺)‘𝑥))
27 eqidd 2230 . . . . . . . . . 10 (𝑟 = 𝐺𝑦 = 𝑦)
2824, 26, 27oveq123d 6021 . . . . . . . . 9 (𝑟 = 𝐺 → (((invg𝑟)‘𝑥)(+g𝑟)𝑦) = (((invg𝐺)‘𝑥)(+g𝐺)𝑦))
2928eleq1d 2298 . . . . . . . 8 (𝑟 = 𝐺 → ((((invg𝑟)‘𝑥)(+g𝑟)𝑦) ∈ 𝑖 ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑖))
3023, 29anbi12d 473 . . . . . . 7 (𝑟 = 𝐺 → (({𝑥, 𝑦} ⊆ (Base‘𝑟) ∧ (((invg𝑟)‘𝑥)(+g𝑟)𝑦) ∈ 𝑖) ↔ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑖)))
3130opabbidv 4149 . . . . . 6 (𝑟 = 𝐺 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑟) ∧ (((invg𝑟)‘𝑥)(+g𝑟)𝑦) ∈ 𝑖)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑖)})
32 eleq2 2293 . . . . . . . 8 (𝑖 = 𝑆 → ((((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑖 ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆))
3332anbi2d 464 . . . . . . 7 (𝑖 = 𝑆 → (({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑖) ↔ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)))
3433opabbidv 4149 . . . . . 6 (𝑖 = 𝑆 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑖)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
35 df-eqg 13704 . . . . . 6 ~QG = (𝑟 ∈ V, 𝑖 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑟) ∧ (((invg𝑟)‘𝑥)(+g𝑟)𝑦) ∈ 𝑖)})
3631, 34, 35ovmpog 6138 . . . . 5 ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)} ∈ V) → (𝐺 ~QG 𝑆) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
374, 6, 21, 36syl3anc 1271 . . . 4 ((𝐺𝑉𝑆𝑊) → (𝐺 ~QG 𝑆) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
382, 37eqtrid 2274 . . 3 ((𝐺𝑉𝑆𝑊) → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
3938releqd 4802 . 2 ((𝐺𝑉𝑆𝑊) → (Rel 𝑅 ↔ Rel {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)}))
401, 39mpbiri 168 1 ((𝐺𝑉𝑆𝑊) → Rel 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  wss 3197  {cpr 3667  {copab 4143   × cxp 4716  Rel wrel 4723   Fn wfn 5312  cfv 5317  (class class class)co 6000  Basecbs 13027  +gcplusg 13105  invgcminusg 13529   ~QG cqg 13701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-inn 9107  df-ndx 13030  df-slot 13031  df-base 13033  df-eqg 13704
This theorem is referenced by:  eqger  13756  eqgid  13758
  Copyright terms: Public domain W3C validator