ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releqgg GIF version

Theorem releqgg 13350
Description: The left coset equivalence relation is a relation. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypothesis
Ref Expression
releqg.r 𝑅 = (𝐺 ~QG 𝑆)
Assertion
Ref Expression
releqgg ((𝐺𝑉𝑆𝑊) → Rel 𝑅)

Proof of Theorem releqgg
Dummy variables 𝑖 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 4792 . 2 Rel {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)}
2 releqg.r . . . 4 𝑅 = (𝐺 ~QG 𝑆)
3 elex 2774 . . . . . 6 (𝐺𝑉𝐺 ∈ V)
43adantr 276 . . . . 5 ((𝐺𝑉𝑆𝑊) → 𝐺 ∈ V)
5 elex 2774 . . . . . 6 (𝑆𝑊𝑆 ∈ V)
65adantl 277 . . . . 5 ((𝐺𝑉𝑆𝑊) → 𝑆 ∈ V)
7 vex 2766 . . . . . . . . 9 𝑥 ∈ V
8 vex 2766 . . . . . . . . 9 𝑦 ∈ V
97, 8prss 3778 . . . . . . . 8 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ↔ {𝑥, 𝑦} ⊆ (Base‘𝐺))
109anbi1i 458 . . . . . . 7 (((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆) ↔ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆))
1110opabbii 4100 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)}
12 basfn 12736 . . . . . . . . 9 Base Fn V
13 funfvex 5575 . . . . . . . . . 10 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
1413funfni 5358 . . . . . . . . 9 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
1512, 4, 14sylancr 414 . . . . . . . 8 ((𝐺𝑉𝑆𝑊) → (Base‘𝐺) ∈ V)
16 xpexg 4777 . . . . . . . 8 (((Base‘𝐺) ∈ V ∧ (Base‘𝐺) ∈ V) → ((Base‘𝐺) × (Base‘𝐺)) ∈ V)
1715, 15, 16syl2anc 411 . . . . . . 7 ((𝐺𝑉𝑆𝑊) → ((Base‘𝐺) × (Base‘𝐺)) ∈ V)
18 opabssxp 4737 . . . . . . . 8 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)} ⊆ ((Base‘𝐺) × (Base‘𝐺))
1918a1i 9 . . . . . . 7 ((𝐺𝑉𝑆𝑊) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)} ⊆ ((Base‘𝐺) × (Base‘𝐺)))
2017, 19ssexd 4173 . . . . . 6 ((𝐺𝑉𝑆𝑊) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)} ∈ V)
2111, 20eqeltrrid 2284 . . . . 5 ((𝐺𝑉𝑆𝑊) → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)} ∈ V)
22 fveq2 5558 . . . . . . . . 9 (𝑟 = 𝐺 → (Base‘𝑟) = (Base‘𝐺))
2322sseq2d 3213 . . . . . . . 8 (𝑟 = 𝐺 → ({𝑥, 𝑦} ⊆ (Base‘𝑟) ↔ {𝑥, 𝑦} ⊆ (Base‘𝐺)))
24 fveq2 5558 . . . . . . . . . 10 (𝑟 = 𝐺 → (+g𝑟) = (+g𝐺))
25 fveq2 5558 . . . . . . . . . . 11 (𝑟 = 𝐺 → (invg𝑟) = (invg𝐺))
2625fveq1d 5560 . . . . . . . . . 10 (𝑟 = 𝐺 → ((invg𝑟)‘𝑥) = ((invg𝐺)‘𝑥))
27 eqidd 2197 . . . . . . . . . 10 (𝑟 = 𝐺𝑦 = 𝑦)
2824, 26, 27oveq123d 5943 . . . . . . . . 9 (𝑟 = 𝐺 → (((invg𝑟)‘𝑥)(+g𝑟)𝑦) = (((invg𝐺)‘𝑥)(+g𝐺)𝑦))
2928eleq1d 2265 . . . . . . . 8 (𝑟 = 𝐺 → ((((invg𝑟)‘𝑥)(+g𝑟)𝑦) ∈ 𝑖 ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑖))
3023, 29anbi12d 473 . . . . . . 7 (𝑟 = 𝐺 → (({𝑥, 𝑦} ⊆ (Base‘𝑟) ∧ (((invg𝑟)‘𝑥)(+g𝑟)𝑦) ∈ 𝑖) ↔ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑖)))
3130opabbidv 4099 . . . . . 6 (𝑟 = 𝐺 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑟) ∧ (((invg𝑟)‘𝑥)(+g𝑟)𝑦) ∈ 𝑖)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑖)})
32 eleq2 2260 . . . . . . . 8 (𝑖 = 𝑆 → ((((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑖 ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆))
3332anbi2d 464 . . . . . . 7 (𝑖 = 𝑆 → (({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑖) ↔ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)))
3433opabbidv 4099 . . . . . 6 (𝑖 = 𝑆 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑖)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
35 df-eqg 13302 . . . . . 6 ~QG = (𝑟 ∈ V, 𝑖 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑟) ∧ (((invg𝑟)‘𝑥)(+g𝑟)𝑦) ∈ 𝑖)})
3631, 34, 35ovmpog 6057 . . . . 5 ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)} ∈ V) → (𝐺 ~QG 𝑆) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
374, 6, 21, 36syl3anc 1249 . . . 4 ((𝐺𝑉𝑆𝑊) → (𝐺 ~QG 𝑆) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
382, 37eqtrid 2241 . . 3 ((𝐺𝑉𝑆𝑊) → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
3938releqd 4747 . 2 ((𝐺𝑉𝑆𝑊) → (Rel 𝑅 ↔ Rel {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)}))
401, 39mpbiri 168 1 ((𝐺𝑉𝑆𝑊) → Rel 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  Vcvv 2763  wss 3157  {cpr 3623  {copab 4093   × cxp 4661  Rel wrel 4668   Fn wfn 5253  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  invgcminusg 13133   ~QG cqg 13299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-inn 8991  df-ndx 12681  df-slot 12682  df-base 12684  df-eqg 13302
This theorem is referenced by:  eqger  13354  eqgid  13356
  Copyright terms: Public domain W3C validator