ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releqgg GIF version

Theorem releqgg 13293
Description: The left coset equivalence relation is a relation. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypothesis
Ref Expression
releqg.r 𝑅 = (𝐺 ~QG 𝑆)
Assertion
Ref Expression
releqgg ((𝐺𝑉𝑆𝑊) → Rel 𝑅)

Proof of Theorem releqgg
Dummy variables 𝑖 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 4789 . 2 Rel {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)}
2 releqg.r . . . 4 𝑅 = (𝐺 ~QG 𝑆)
3 elex 2771 . . . . . 6 (𝐺𝑉𝐺 ∈ V)
43adantr 276 . . . . 5 ((𝐺𝑉𝑆𝑊) → 𝐺 ∈ V)
5 elex 2771 . . . . . 6 (𝑆𝑊𝑆 ∈ V)
65adantl 277 . . . . 5 ((𝐺𝑉𝑆𝑊) → 𝑆 ∈ V)
7 vex 2763 . . . . . . . . 9 𝑥 ∈ V
8 vex 2763 . . . . . . . . 9 𝑦 ∈ V
97, 8prss 3775 . . . . . . . 8 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ↔ {𝑥, 𝑦} ⊆ (Base‘𝐺))
109anbi1i 458 . . . . . . 7 (((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆) ↔ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆))
1110opabbii 4097 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)}
12 basfn 12679 . . . . . . . . 9 Base Fn V
13 funfvex 5572 . . . . . . . . . 10 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
1413funfni 5355 . . . . . . . . 9 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
1512, 4, 14sylancr 414 . . . . . . . 8 ((𝐺𝑉𝑆𝑊) → (Base‘𝐺) ∈ V)
16 xpexg 4774 . . . . . . . 8 (((Base‘𝐺) ∈ V ∧ (Base‘𝐺) ∈ V) → ((Base‘𝐺) × (Base‘𝐺)) ∈ V)
1715, 15, 16syl2anc 411 . . . . . . 7 ((𝐺𝑉𝑆𝑊) → ((Base‘𝐺) × (Base‘𝐺)) ∈ V)
18 opabssxp 4734 . . . . . . . 8 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)} ⊆ ((Base‘𝐺) × (Base‘𝐺))
1918a1i 9 . . . . . . 7 ((𝐺𝑉𝑆𝑊) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)} ⊆ ((Base‘𝐺) × (Base‘𝐺)))
2017, 19ssexd 4170 . . . . . 6 ((𝐺𝑉𝑆𝑊) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)} ∈ V)
2111, 20eqeltrrid 2281 . . . . 5 ((𝐺𝑉𝑆𝑊) → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)} ∈ V)
22 fveq2 5555 . . . . . . . . 9 (𝑟 = 𝐺 → (Base‘𝑟) = (Base‘𝐺))
2322sseq2d 3210 . . . . . . . 8 (𝑟 = 𝐺 → ({𝑥, 𝑦} ⊆ (Base‘𝑟) ↔ {𝑥, 𝑦} ⊆ (Base‘𝐺)))
24 fveq2 5555 . . . . . . . . . 10 (𝑟 = 𝐺 → (+g𝑟) = (+g𝐺))
25 fveq2 5555 . . . . . . . . . . 11 (𝑟 = 𝐺 → (invg𝑟) = (invg𝐺))
2625fveq1d 5557 . . . . . . . . . 10 (𝑟 = 𝐺 → ((invg𝑟)‘𝑥) = ((invg𝐺)‘𝑥))
27 eqidd 2194 . . . . . . . . . 10 (𝑟 = 𝐺𝑦 = 𝑦)
2824, 26, 27oveq123d 5940 . . . . . . . . 9 (𝑟 = 𝐺 → (((invg𝑟)‘𝑥)(+g𝑟)𝑦) = (((invg𝐺)‘𝑥)(+g𝐺)𝑦))
2928eleq1d 2262 . . . . . . . 8 (𝑟 = 𝐺 → ((((invg𝑟)‘𝑥)(+g𝑟)𝑦) ∈ 𝑖 ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑖))
3023, 29anbi12d 473 . . . . . . 7 (𝑟 = 𝐺 → (({𝑥, 𝑦} ⊆ (Base‘𝑟) ∧ (((invg𝑟)‘𝑥)(+g𝑟)𝑦) ∈ 𝑖) ↔ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑖)))
3130opabbidv 4096 . . . . . 6 (𝑟 = 𝐺 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑟) ∧ (((invg𝑟)‘𝑥)(+g𝑟)𝑦) ∈ 𝑖)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑖)})
32 eleq2 2257 . . . . . . . 8 (𝑖 = 𝑆 → ((((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑖 ↔ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆))
3332anbi2d 464 . . . . . . 7 (𝑖 = 𝑆 → (({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑖) ↔ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)))
3433opabbidv 4096 . . . . . 6 (𝑖 = 𝑆 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑖)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
35 df-eqg 13245 . . . . . 6 ~QG = (𝑟 ∈ V, 𝑖 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑟) ∧ (((invg𝑟)‘𝑥)(+g𝑟)𝑦) ∈ 𝑖)})
3631, 34, 35ovmpog 6054 . . . . 5 ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)} ∈ V) → (𝐺 ~QG 𝑆) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
374, 6, 21, 36syl3anc 1249 . . . 4 ((𝐺𝑉𝑆𝑊) → (𝐺 ~QG 𝑆) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
382, 37eqtrid 2238 . . 3 ((𝐺𝑉𝑆𝑊) → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)})
3938releqd 4744 . 2 ((𝐺𝑉𝑆𝑊) → (Rel 𝑅 ↔ Rel {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑆)}))
401, 39mpbiri 168 1 ((𝐺𝑉𝑆𝑊) → Rel 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  wss 3154  {cpr 3620  {copab 4090   × cxp 4658  Rel wrel 4665   Fn wfn 5250  cfv 5255  (class class class)co 5919  Basecbs 12621  +gcplusg 12698  invgcminusg 13076   ~QG cqg 13242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-inn 8985  df-ndx 12624  df-slot 12625  df-base 12627  df-eqg 13245
This theorem is referenced by:  eqger  13297  eqgid  13299
  Copyright terms: Public domain W3C validator