| Step | Hyp | Ref
 | Expression | 
| 1 |   | dvdsrvald.r | 
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ SRing) | 
| 2 |   | reldvdsrsrg 13648 | 
. . . . . 6
⊢ (𝑅 ∈ SRing → Rel
(∥r‘𝑅)) | 
| 3 | 1, 2 | syl 14 | 
. . . . 5
⊢ (𝜑 → Rel
(∥r‘𝑅)) | 
| 4 |   | dvdsrvald.2 | 
. . . . . 6
⊢ (𝜑 → ∥ =
(∥r‘𝑅)) | 
| 5 | 4 | releqd 4747 | 
. . . . 5
⊢ (𝜑 → (Rel ∥ ↔ Rel
(∥r‘𝑅))) | 
| 6 | 3, 5 | mpbird 167 | 
. . . 4
⊢ (𝜑 → Rel ∥ ) | 
| 7 |   | brrelex12 4701 | 
. . . 4
⊢ ((Rel
∥
∧ 𝑋 ∥ 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V)) | 
| 8 | 6, 7 | sylan 283 | 
. . 3
⊢ ((𝜑 ∧ 𝑋 ∥ 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V)) | 
| 9 | 8 | ex 115 | 
. 2
⊢ (𝜑 → (𝑋 ∥ 𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V))) | 
| 10 |   | simplr 528 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ (𝑧 ∈ 𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑋 ∈ 𝐵) | 
| 11 | 10 | elexd 2776 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ (𝑧 ∈ 𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑋 ∈ V) | 
| 12 |   | simprr 531 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ (𝑧 ∈ 𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → (𝑧 · 𝑋) = 𝑌) | 
| 13 | 1 | ad2antrr 488 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ (𝑧 ∈ 𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑅 ∈ SRing) | 
| 14 |   | simprl 529 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ (𝑧 ∈ 𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑧 ∈ 𝐵) | 
| 15 |   | dvdsrvald.1 | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | 
| 16 | 15 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ (𝑧 ∈ 𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝐵 = (Base‘𝑅)) | 
| 17 | 14, 16 | eleqtrd 2275 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ (𝑧 ∈ 𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑧 ∈ (Base‘𝑅)) | 
| 18 | 10, 16 | eleqtrd 2275 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ (𝑧 ∈ 𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑋 ∈ (Base‘𝑅)) | 
| 19 |   | eqid 2196 | 
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 20 |   | eqid 2196 | 
. . . . . . . . . 10
⊢
(.r‘𝑅) = (.r‘𝑅) | 
| 21 | 19, 20 | srgcl 13526 | 
. . . . . . . . 9
⊢ ((𝑅 ∈ SRing ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑧(.r‘𝑅)𝑋) ∈ (Base‘𝑅)) | 
| 22 | 13, 17, 18, 21 | syl3anc 1249 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ (𝑧 ∈ 𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → (𝑧(.r‘𝑅)𝑋) ∈ (Base‘𝑅)) | 
| 23 |   | dvdsrvald.3 | 
. . . . . . . . . 10
⊢ (𝜑 → · =
(.r‘𝑅)) | 
| 24 | 23 | ad2antrr 488 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ (𝑧 ∈ 𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → · =
(.r‘𝑅)) | 
| 25 | 24 | oveqd 5939 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ (𝑧 ∈ 𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → (𝑧 · 𝑋) = (𝑧(.r‘𝑅)𝑋)) | 
| 26 | 22, 25, 16 | 3eltr4d 2280 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ (𝑧 ∈ 𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → (𝑧 · 𝑋) ∈ 𝐵) | 
| 27 | 12, 26 | eqeltrrd 2274 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ (𝑧 ∈ 𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑌 ∈ 𝐵) | 
| 28 | 27 | elexd 2776 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ (𝑧 ∈ 𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑌 ∈ V) | 
| 29 | 11, 28 | jca 306 | 
. . . 4
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ (𝑧 ∈ 𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → (𝑋 ∈ V ∧ 𝑌 ∈ V)) | 
| 30 | 29 | rexlimdvaa 2615 | 
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V))) | 
| 31 | 30 | expimpd 363 | 
. 2
⊢ (𝜑 → ((𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V))) | 
| 32 | 15, 4, 1, 23 | dvdsrvald 13649 | 
. . . . . 6
⊢ (𝜑 → ∥ = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦)}) | 
| 33 | 32 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → ∥ = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦)}) | 
| 34 | 33 | breqd 4044 | 
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → (𝑋 ∥ 𝑌 ↔ 𝑋{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦)}𝑌)) | 
| 35 |   | simpl 109 | 
. . . . . . . 8
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | 
| 36 | 35 | eleq1d 2265 | 
. . . . . . 7
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵)) | 
| 37 | 35 | oveq2d 5938 | 
. . . . . . . . 9
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑧 · 𝑥) = (𝑧 · 𝑋)) | 
| 38 |   | simpr 110 | 
. . . . . . . . 9
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | 
| 39 | 37, 38 | eqeq12d 2211 | 
. . . . . . . 8
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑧 · 𝑥) = 𝑦 ↔ (𝑧 · 𝑋) = 𝑌)) | 
| 40 | 39 | rexbidv 2498 | 
. . . . . . 7
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦 ↔ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌)) | 
| 41 | 36, 40 | anbi12d 473 | 
. . . . . 6
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑥 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌))) | 
| 42 |   | eqid 2196 | 
. . . . . 6
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦)} | 
| 43 | 41, 42 | brabga 4298 | 
. . . . 5
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦)}𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌))) | 
| 44 | 43 | adantl 277 | 
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → (𝑋{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦)}𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌))) | 
| 45 | 34, 44 | bitrd 188 | 
. . 3
⊢ ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌))) | 
| 46 | 45 | ex 115 | 
. 2
⊢ (𝜑 → ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌)))) | 
| 47 | 9, 31, 46 | pm5.21ndd 706 | 
1
⊢ (𝜑 → (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌))) |