ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsrd GIF version

Theorem dvdsrd 13650
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsrvald.1 (𝜑𝐵 = (Base‘𝑅))
dvdsrvald.2 (𝜑 = (∥r𝑅))
dvdsrvald.r (𝜑𝑅 ∈ SRing)
dvdsrvald.3 (𝜑· = (.r𝑅))
Assertion
Ref Expression
dvdsrd (𝜑 → (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌)))
Distinct variable groups:   𝑧,𝐵   𝑧,𝑋   𝑧,𝑌   𝑧,𝑅   𝑧, ·   𝜑,𝑧
Allowed substitution hint:   (𝑧)

Proof of Theorem dvdsrd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsrvald.r . . . . . 6 (𝜑𝑅 ∈ SRing)
2 reldvdsrsrg 13648 . . . . . 6 (𝑅 ∈ SRing → Rel (∥r𝑅))
31, 2syl 14 . . . . 5 (𝜑 → Rel (∥r𝑅))
4 dvdsrvald.2 . . . . . 6 (𝜑 = (∥r𝑅))
54releqd 4747 . . . . 5 (𝜑 → (Rel ↔ Rel (∥r𝑅)))
63, 5mpbird 167 . . . 4 (𝜑 → Rel )
7 brrelex12 4701 . . . 4 ((Rel 𝑋 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
86, 7sylan 283 . . 3 ((𝜑𝑋 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
98ex 115 . 2 (𝜑 → (𝑋 𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
10 simplr 528 . . . . . 6 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑋𝐵)
1110elexd 2776 . . . . 5 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑋 ∈ V)
12 simprr 531 . . . . . . 7 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → (𝑧 · 𝑋) = 𝑌)
131ad2antrr 488 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑅 ∈ SRing)
14 simprl 529 . . . . . . . . . 10 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑧𝐵)
15 dvdsrvald.1 . . . . . . . . . . 11 (𝜑𝐵 = (Base‘𝑅))
1615ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝐵 = (Base‘𝑅))
1714, 16eleqtrd 2275 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑧 ∈ (Base‘𝑅))
1810, 16eleqtrd 2275 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑋 ∈ (Base‘𝑅))
19 eqid 2196 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
20 eqid 2196 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
2119, 20srgcl 13526 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑧(.r𝑅)𝑋) ∈ (Base‘𝑅))
2213, 17, 18, 21syl3anc 1249 . . . . . . . 8 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → (𝑧(.r𝑅)𝑋) ∈ (Base‘𝑅))
23 dvdsrvald.3 . . . . . . . . . 10 (𝜑· = (.r𝑅))
2423ad2antrr 488 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → · = (.r𝑅))
2524oveqd 5939 . . . . . . . 8 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → (𝑧 · 𝑋) = (𝑧(.r𝑅)𝑋))
2622, 25, 163eltr4d 2280 . . . . . . 7 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → (𝑧 · 𝑋) ∈ 𝐵)
2712, 26eqeltrrd 2274 . . . . . 6 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑌𝐵)
2827elexd 2776 . . . . 5 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑌 ∈ V)
2911, 28jca 306 . . . 4 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
3029rexlimdvaa 2615 . . 3 ((𝜑𝑋𝐵) → (∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
3130expimpd 363 . 2 (𝜑 → ((𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
3215, 4, 1, 23dvdsrvald 13649 . . . . . 6 (𝜑 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)})
3332adantr 276 . . . . 5 ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)})
3433breqd 4044 . . . 4 ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → (𝑋 𝑌𝑋{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)}𝑌))
35 simpl 109 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
3635eleq1d 2265 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝐵𝑋𝐵))
3735oveq2d 5938 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑧 · 𝑥) = (𝑧 · 𝑋))
38 simpr 110 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
3937, 38eqeq12d 2211 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑧 · 𝑥) = 𝑦 ↔ (𝑧 · 𝑋) = 𝑌))
4039rexbidv 2498 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦 ↔ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))
4136, 40anbi12d 473 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦) ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌)))
42 eqid 2196 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)}
4341, 42brabga 4298 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)}𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌)))
4443adantl 277 . . . 4 ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → (𝑋{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)}𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌)))
4534, 44bitrd 188 . . 3 ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌)))
4645ex 115 . 2 (𝜑 → ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))))
479, 31, 46pm5.21ndd 706 1 (𝜑 → (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wrex 2476  Vcvv 2763   class class class wbr 4033  {copab 4093  Rel wrel 4668  cfv 5258  (class class class)co 5922  Basecbs 12678  .rcmulr 12756  SRingcsrg 13519  rcdsr 13642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-mgp 13477  df-srg 13520  df-dvdsr 13645
This theorem is referenced by:  dvdsr2d  13651  dvdsrmuld  13652  dvdsrcld  13653  dvdsrcl2  13655  dvdsrtr  13657  dvdsrmul1  13658  opprunitd  13666  crngunit  13667  rhmdvdsr  13731  subrgdvds  13791  cnfldui  14145
  Copyright terms: Public domain W3C validator