ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsrd GIF version

Theorem dvdsrd 13590
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsrvald.1 (𝜑𝐵 = (Base‘𝑅))
dvdsrvald.2 (𝜑 = (∥r𝑅))
dvdsrvald.r (𝜑𝑅 ∈ SRing)
dvdsrvald.3 (𝜑· = (.r𝑅))
Assertion
Ref Expression
dvdsrd (𝜑 → (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌)))
Distinct variable groups:   𝑧,𝐵   𝑧,𝑋   𝑧,𝑌   𝑧,𝑅   𝑧, ·   𝜑,𝑧
Allowed substitution hint:   (𝑧)

Proof of Theorem dvdsrd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsrvald.r . . . . . 6 (𝜑𝑅 ∈ SRing)
2 reldvdsrsrg 13588 . . . . . 6 (𝑅 ∈ SRing → Rel (∥r𝑅))
31, 2syl 14 . . . . 5 (𝜑 → Rel (∥r𝑅))
4 dvdsrvald.2 . . . . . 6 (𝜑 = (∥r𝑅))
54releqd 4743 . . . . 5 (𝜑 → (Rel ↔ Rel (∥r𝑅)))
63, 5mpbird 167 . . . 4 (𝜑 → Rel )
7 brrelex12 4697 . . . 4 ((Rel 𝑋 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
86, 7sylan 283 . . 3 ((𝜑𝑋 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
98ex 115 . 2 (𝜑 → (𝑋 𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
10 simplr 528 . . . . . 6 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑋𝐵)
1110elexd 2773 . . . . 5 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑋 ∈ V)
12 simprr 531 . . . . . . 7 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → (𝑧 · 𝑋) = 𝑌)
131ad2antrr 488 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑅 ∈ SRing)
14 simprl 529 . . . . . . . . . 10 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑧𝐵)
15 dvdsrvald.1 . . . . . . . . . . 11 (𝜑𝐵 = (Base‘𝑅))
1615ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝐵 = (Base‘𝑅))
1714, 16eleqtrd 2272 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑧 ∈ (Base‘𝑅))
1810, 16eleqtrd 2272 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑋 ∈ (Base‘𝑅))
19 eqid 2193 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
20 eqid 2193 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
2119, 20srgcl 13466 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑧(.r𝑅)𝑋) ∈ (Base‘𝑅))
2213, 17, 18, 21syl3anc 1249 . . . . . . . 8 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → (𝑧(.r𝑅)𝑋) ∈ (Base‘𝑅))
23 dvdsrvald.3 . . . . . . . . . 10 (𝜑· = (.r𝑅))
2423ad2antrr 488 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → · = (.r𝑅))
2524oveqd 5935 . . . . . . . 8 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → (𝑧 · 𝑋) = (𝑧(.r𝑅)𝑋))
2622, 25, 163eltr4d 2277 . . . . . . 7 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → (𝑧 · 𝑋) ∈ 𝐵)
2712, 26eqeltrrd 2271 . . . . . 6 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑌𝐵)
2827elexd 2773 . . . . 5 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑌 ∈ V)
2911, 28jca 306 . . . 4 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
3029rexlimdvaa 2612 . . 3 ((𝜑𝑋𝐵) → (∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
3130expimpd 363 . 2 (𝜑 → ((𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
3215, 4, 1, 23dvdsrvald 13589 . . . . . 6 (𝜑 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)})
3332adantr 276 . . . . 5 ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)})
3433breqd 4040 . . . 4 ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → (𝑋 𝑌𝑋{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)}𝑌))
35 simpl 109 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
3635eleq1d 2262 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝐵𝑋𝐵))
3735oveq2d 5934 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑧 · 𝑥) = (𝑧 · 𝑋))
38 simpr 110 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
3937, 38eqeq12d 2208 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑧 · 𝑥) = 𝑦 ↔ (𝑧 · 𝑋) = 𝑌))
4039rexbidv 2495 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦 ↔ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))
4136, 40anbi12d 473 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦) ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌)))
42 eqid 2193 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)}
4341, 42brabga 4294 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)}𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌)))
4443adantl 277 . . . 4 ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → (𝑋{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)}𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌)))
4534, 44bitrd 188 . . 3 ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌)))
4645ex 115 . 2 (𝜑 → ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))))
479, 31, 46pm5.21ndd 706 1 (𝜑 → (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wrex 2473  Vcvv 2760   class class class wbr 4029  {copab 4089  Rel wrel 4664  cfv 5254  (class class class)co 5918  Basecbs 12618  .rcmulr 12696  SRingcsrg 13459  rcdsr 13582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mgp 13417  df-srg 13460  df-dvdsr 13585
This theorem is referenced by:  dvdsr2d  13591  dvdsrmuld  13592  dvdsrcld  13593  dvdsrcl2  13595  dvdsrtr  13597  dvdsrmul1  13598  opprunitd  13606  crngunit  13607  rhmdvdsr  13671  subrgdvds  13731  cnfldui  14077
  Copyright terms: Public domain W3C validator