ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsrd GIF version

Theorem dvdsrd 13900
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsrvald.1 (𝜑𝐵 = (Base‘𝑅))
dvdsrvald.2 (𝜑 = (∥r𝑅))
dvdsrvald.r (𝜑𝑅 ∈ SRing)
dvdsrvald.3 (𝜑· = (.r𝑅))
Assertion
Ref Expression
dvdsrd (𝜑 → (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌)))
Distinct variable groups:   𝑧,𝐵   𝑧,𝑋   𝑧,𝑌   𝑧,𝑅   𝑧, ·   𝜑,𝑧
Allowed substitution hint:   (𝑧)

Proof of Theorem dvdsrd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsrvald.r . . . . . 6 (𝜑𝑅 ∈ SRing)
2 reldvdsrsrg 13898 . . . . . 6 (𝑅 ∈ SRing → Rel (∥r𝑅))
31, 2syl 14 . . . . 5 (𝜑 → Rel (∥r𝑅))
4 dvdsrvald.2 . . . . . 6 (𝜑 = (∥r𝑅))
54releqd 4763 . . . . 5 (𝜑 → (Rel ↔ Rel (∥r𝑅)))
63, 5mpbird 167 . . . 4 (𝜑 → Rel )
7 brrelex12 4717 . . . 4 ((Rel 𝑋 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
86, 7sylan 283 . . 3 ((𝜑𝑋 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
98ex 115 . 2 (𝜑 → (𝑋 𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
10 simplr 528 . . . . . 6 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑋𝐵)
1110elexd 2786 . . . . 5 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑋 ∈ V)
12 simprr 531 . . . . . . 7 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → (𝑧 · 𝑋) = 𝑌)
131ad2antrr 488 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑅 ∈ SRing)
14 simprl 529 . . . . . . . . . 10 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑧𝐵)
15 dvdsrvald.1 . . . . . . . . . . 11 (𝜑𝐵 = (Base‘𝑅))
1615ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝐵 = (Base‘𝑅))
1714, 16eleqtrd 2285 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑧 ∈ (Base‘𝑅))
1810, 16eleqtrd 2285 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑋 ∈ (Base‘𝑅))
19 eqid 2206 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
20 eqid 2206 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
2119, 20srgcl 13776 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑧(.r𝑅)𝑋) ∈ (Base‘𝑅))
2213, 17, 18, 21syl3anc 1250 . . . . . . . 8 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → (𝑧(.r𝑅)𝑋) ∈ (Base‘𝑅))
23 dvdsrvald.3 . . . . . . . . . 10 (𝜑· = (.r𝑅))
2423ad2antrr 488 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → · = (.r𝑅))
2524oveqd 5968 . . . . . . . 8 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → (𝑧 · 𝑋) = (𝑧(.r𝑅)𝑋))
2622, 25, 163eltr4d 2290 . . . . . . 7 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → (𝑧 · 𝑋) ∈ 𝐵)
2712, 26eqeltrrd 2284 . . . . . 6 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑌𝐵)
2827elexd 2786 . . . . 5 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → 𝑌 ∈ V)
2911, 28jca 306 . . . 4 (((𝜑𝑋𝐵) ∧ (𝑧𝐵 ∧ (𝑧 · 𝑋) = 𝑌)) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
3029rexlimdvaa 2625 . . 3 ((𝜑𝑋𝐵) → (∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
3130expimpd 363 . 2 (𝜑 → ((𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
3215, 4, 1, 23dvdsrvald 13899 . . . . . 6 (𝜑 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)})
3332adantr 276 . . . . 5 ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)})
3433breqd 4058 . . . 4 ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → (𝑋 𝑌𝑋{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)}𝑌))
35 simpl 109 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
3635eleq1d 2275 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝐵𝑋𝐵))
3735oveq2d 5967 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑧 · 𝑥) = (𝑧 · 𝑋))
38 simpr 110 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
3937, 38eqeq12d 2221 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑧 · 𝑥) = 𝑦 ↔ (𝑧 · 𝑋) = 𝑌))
4039rexbidv 2508 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦 ↔ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))
4136, 40anbi12d 473 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦) ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌)))
42 eqid 2206 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)}
4341, 42brabga 4314 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)}𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌)))
4443adantl 277 . . . 4 ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → (𝑋{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)}𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌)))
4534, 44bitrd 188 . . 3 ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌)))
4645ex 115 . 2 (𝜑 → ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))))
479, 31, 46pm5.21ndd 707 1 (𝜑 → (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wrex 2486  Vcvv 2773   class class class wbr 4047  {copab 4108  Rel wrel 4684  cfv 5276  (class class class)co 5951  Basecbs 12876  .rcmulr 12954  SRingcsrg 13769  rcdsr 13892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-iota 5237  df-fun 5278  df-fn 5279  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-3 9103  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-plusg 12966  df-mulr 12967  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-mgp 13727  df-srg 13770  df-dvdsr 13895
This theorem is referenced by:  dvdsr2d  13901  dvdsrmuld  13902  dvdsrcld  13903  dvdsrcl2  13905  dvdsrtr  13907  dvdsrmul1  13908  opprunitd  13916  crngunit  13917  rhmdvdsr  13981  subrgdvds  14041  cnfldui  14395
  Copyright terms: Public domain W3C validator