![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > setsex | GIF version |
Description: Applying the structure replacement function yields a set. (Contributed by Jim Kingdon, 22-Jan-2023.) |
Ref | Expression |
---|---|
setsex | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsvala 12487 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) | |
2 | resexg 4947 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → (𝑆 ↾ (V ∖ {𝐴})) ∈ V) | |
3 | 2 | 3ad2ant1 1018 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → (𝑆 ↾ (V ∖ {𝐴})) ∈ V) |
4 | opexg 4228 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ V) | |
5 | 4 | 3adant1 1015 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ V) |
6 | snexg 4184 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ V → {〈𝐴, 𝐵〉} ∈ V) | |
7 | 5, 6 | syl 14 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉} ∈ V) |
8 | unexg 4443 | . . 3 ⊢ (((𝑆 ↾ (V ∖ {𝐴})) ∈ V ∧ {〈𝐴, 𝐵〉} ∈ V) → ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉}) ∈ V) | |
9 | 3, 7, 8 | syl2anc 411 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉}) ∈ V) |
10 | 1, 9 | eqeltrd 2254 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 978 ∈ wcel 2148 Vcvv 2737 ∖ cdif 3126 ∪ cun 3127 {csn 3592 〈cop 3595 ↾ cres 4628 (class class class)co 5874 sSet csts 12454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2739 df-sbc 2963 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4004 df-opab 4065 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-res 4638 df-iota 5178 df-fun 5218 df-fv 5224 df-ov 5877 df-oprab 5878 df-mpo 5879 df-sets 12463 |
This theorem is referenced by: setsabsd 12495 setscom 12496 setsslnid 12508 ressvalsets 12518 ressex 12519 fnmgp 13085 mgpvalg 13086 mgpex 13088 opprvalg 13194 opprex 13198 |
Copyright terms: Public domain | W3C validator |