ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsex GIF version

Theorem setsex 12448
Description: Applying the structure replacement function yields a set. (Contributed by Jim Kingdon, 22-Jan-2023.)
Assertion
Ref Expression
setsex ((𝑆𝑉𝐴𝑋𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V)

Proof of Theorem setsex
StepHypRef Expression
1 setsvala 12447 . 2 ((𝑆𝑉𝐴𝑋𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
2 resexg 4931 . . . 4 (𝑆𝑉 → (𝑆 ↾ (V ∖ {𝐴})) ∈ V)
323ad2ant1 1013 . . 3 ((𝑆𝑉𝐴𝑋𝐵𝑊) → (𝑆 ↾ (V ∖ {𝐴})) ∈ V)
4 opexg 4213 . . . . 5 ((𝐴𝑋𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ V)
543adant1 1010 . . . 4 ((𝑆𝑉𝐴𝑋𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ V)
6 snexg 4170 . . . 4 (⟨𝐴, 𝐵⟩ ∈ V → {⟨𝐴, 𝐵⟩} ∈ V)
75, 6syl 14 . . 3 ((𝑆𝑉𝐴𝑋𝐵𝑊) → {⟨𝐴, 𝐵⟩} ∈ V)
8 unexg 4428 . . 3 (((𝑆 ↾ (V ∖ {𝐴})) ∈ V ∧ {⟨𝐴, 𝐵⟩} ∈ V) → ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}) ∈ V)
93, 7, 8syl2anc 409 . 2 ((𝑆𝑉𝐴𝑋𝐵𝑊) → ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}) ∈ V)
101, 9eqeltrd 2247 1 ((𝑆𝑉𝐴𝑋𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 973  wcel 2141  Vcvv 2730  cdif 3118  cun 3119  {csn 3583  cop 3586  cres 4613  (class class class)co 5853   sSet csts 12414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-res 4623  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-sets 12423
This theorem is referenced by:  setsabsd  12455  setscom  12456  setsslnid  12467  ressval2  12478
  Copyright terms: Public domain W3C validator