| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > setsex | GIF version | ||
| Description: Applying the structure replacement function yields a set. (Contributed by Jim Kingdon, 22-Jan-2023.) |
| Ref | Expression |
|---|---|
| setsex | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsvala 12863 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) | |
| 2 | resexg 4999 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → (𝑆 ↾ (V ∖ {𝐴})) ∈ V) | |
| 3 | 2 | 3ad2ant1 1021 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → (𝑆 ↾ (V ∖ {𝐴})) ∈ V) |
| 4 | opexg 4272 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ V) | |
| 5 | 4 | 3adant1 1018 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ V) |
| 6 | snexg 4228 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ V → {〈𝐴, 𝐵〉} ∈ V) | |
| 7 | 5, 6 | syl 14 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉} ∈ V) |
| 8 | unexg 4490 | . . 3 ⊢ (((𝑆 ↾ (V ∖ {𝐴})) ∈ V ∧ {〈𝐴, 𝐵〉} ∈ V) → ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉}) ∈ V) | |
| 9 | 3, 7, 8 | syl2anc 411 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉}) ∈ V) |
| 10 | 1, 9 | eqeltrd 2282 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 ∈ wcel 2176 Vcvv 2772 ∖ cdif 3163 ∪ cun 3164 {csn 3633 〈cop 3636 ↾ cres 4677 (class class class)co 5944 sSet csts 12830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-res 4687 df-iota 5232 df-fun 5273 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-sets 12839 |
| This theorem is referenced by: setsabsd 12871 setscom 12872 setsslnid 12884 ressvalsets 12896 ressex 12897 fnmgp 13684 mgpvalg 13685 mgpex 13687 opprvalg 13831 opprex 13835 sraval 14199 sralemg 14200 srascag 14204 sravscag 14205 sraipg 14206 sraex 14208 zlmval 14389 zlmlemg 14390 zlmsca 14394 zlmvscag 14395 znval 14398 znbaslemnn 14401 |
| Copyright terms: Public domain | W3C validator |