![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > setsex | GIF version |
Description: Applying the structure replacement function yields a set. (Contributed by Jim Kingdon, 22-Jan-2023.) |
Ref | Expression |
---|---|
setsex | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsvala 12495 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩})) | |
2 | resexg 4949 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → (𝑆 ↾ (V ∖ {𝐴})) ∈ V) | |
3 | 2 | 3ad2ant1 1018 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → (𝑆 ↾ (V ∖ {𝐴})) ∈ V) |
4 | opexg 4230 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → ⟨𝐴, 𝐵⟩ ∈ V) | |
5 | 4 | 3adant1 1015 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → ⟨𝐴, 𝐵⟩ ∈ V) |
6 | snexg 4186 | . . . 4 ⊢ (⟨𝐴, 𝐵⟩ ∈ V → {⟨𝐴, 𝐵⟩} ∈ V) | |
7 | 5, 6 | syl 14 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → {⟨𝐴, 𝐵⟩} ∈ V) |
8 | unexg 4445 | . . 3 ⊢ (((𝑆 ↾ (V ∖ {𝐴})) ∈ V ∧ {⟨𝐴, 𝐵⟩} ∈ V) → ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}) ∈ V) | |
9 | 3, 7, 8 | syl2anc 411 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}) ∈ V) |
10 | 1, 9 | eqeltrd 2254 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 978 ∈ wcel 2148 Vcvv 2739 ∖ cdif 3128 ∪ cun 3129 {csn 3594 ⟨cop 3597 ↾ cres 4630 (class class class)co 5877 sSet csts 12462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-res 4640 df-iota 5180 df-fun 5220 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-sets 12471 |
This theorem is referenced by: setsabsd 12503 setscom 12504 setsslnid 12516 ressvalsets 12526 ressex 12527 fnmgp 13137 mgpvalg 13138 mgpex 13140 opprvalg 13246 opprex 13250 |
Copyright terms: Public domain | W3C validator |