Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > setsex | GIF version |
Description: Applying the structure replacement function yields a set. (Contributed by Jim Kingdon, 22-Jan-2023.) |
Ref | Expression |
---|---|
setsex | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsvala 12425 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) | |
2 | resexg 4924 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → (𝑆 ↾ (V ∖ {𝐴})) ∈ V) | |
3 | 2 | 3ad2ant1 1008 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → (𝑆 ↾ (V ∖ {𝐴})) ∈ V) |
4 | opexg 4206 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ V) | |
5 | 4 | 3adant1 1005 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ V) |
6 | snexg 4163 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ V → {〈𝐴, 𝐵〉} ∈ V) | |
7 | 5, 6 | syl 14 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉} ∈ V) |
8 | unexg 4421 | . . 3 ⊢ (((𝑆 ↾ (V ∖ {𝐴})) ∈ V ∧ {〈𝐴, 𝐵〉} ∈ V) → ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉}) ∈ V) | |
9 | 3, 7, 8 | syl2anc 409 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉}) ∈ V) |
10 | 1, 9 | eqeltrd 2243 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 968 ∈ wcel 2136 Vcvv 2726 ∖ cdif 3113 ∪ cun 3114 {csn 3576 〈cop 3579 ↾ cres 4606 (class class class)co 5842 sSet csts 12392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-res 4616 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-sets 12401 |
This theorem is referenced by: setsabsd 12433 setscom 12434 setsslnid 12445 ressval2 12455 |
Copyright terms: Public domain | W3C validator |