ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsex GIF version

Theorem setsex 12735
Description: Applying the structure replacement function yields a set. (Contributed by Jim Kingdon, 22-Jan-2023.)
Assertion
Ref Expression
setsex ((𝑆𝑉𝐴𝑋𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V)

Proof of Theorem setsex
StepHypRef Expression
1 setsvala 12734 . 2 ((𝑆𝑉𝐴𝑋𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
2 resexg 4987 . . . 4 (𝑆𝑉 → (𝑆 ↾ (V ∖ {𝐴})) ∈ V)
323ad2ant1 1020 . . 3 ((𝑆𝑉𝐴𝑋𝐵𝑊) → (𝑆 ↾ (V ∖ {𝐴})) ∈ V)
4 opexg 4262 . . . . 5 ((𝐴𝑋𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ V)
543adant1 1017 . . . 4 ((𝑆𝑉𝐴𝑋𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ V)
6 snexg 4218 . . . 4 (⟨𝐴, 𝐵⟩ ∈ V → {⟨𝐴, 𝐵⟩} ∈ V)
75, 6syl 14 . . 3 ((𝑆𝑉𝐴𝑋𝐵𝑊) → {⟨𝐴, 𝐵⟩} ∈ V)
8 unexg 4479 . . 3 (((𝑆 ↾ (V ∖ {𝐴})) ∈ V ∧ {⟨𝐴, 𝐵⟩} ∈ V) → ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}) ∈ V)
93, 7, 8syl2anc 411 . 2 ((𝑆𝑉𝐴𝑋𝐵𝑊) → ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}) ∈ V)
101, 9eqeltrd 2273 1 ((𝑆𝑉𝐴𝑋𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980  wcel 2167  Vcvv 2763  cdif 3154  cun 3155  {csn 3623  cop 3626  cres 4666  (class class class)co 5925   sSet csts 12701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-res 4676  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-sets 12710
This theorem is referenced by:  setsabsd  12742  setscom  12743  setsslnid  12755  ressvalsets  12767  ressex  12768  fnmgp  13554  mgpvalg  13555  mgpex  13557  opprvalg  13701  opprex  13705  sraval  14069  sralemg  14070  srascag  14074  sravscag  14075  sraipg  14076  sraex  14078  zlmval  14259  zlmlemg  14260  zlmsca  14264  zlmvscag  14265  znval  14268  znbaslemnn  14271
  Copyright terms: Public domain W3C validator