ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsex GIF version

Theorem setsex 12488
Description: Applying the structure replacement function yields a set. (Contributed by Jim Kingdon, 22-Jan-2023.)
Assertion
Ref Expression
setsex ((𝑆𝑉𝐴𝑋𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V)

Proof of Theorem setsex
StepHypRef Expression
1 setsvala 12487 . 2 ((𝑆𝑉𝐴𝑋𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
2 resexg 4947 . . . 4 (𝑆𝑉 → (𝑆 ↾ (V ∖ {𝐴})) ∈ V)
323ad2ant1 1018 . . 3 ((𝑆𝑉𝐴𝑋𝐵𝑊) → (𝑆 ↾ (V ∖ {𝐴})) ∈ V)
4 opexg 4228 . . . . 5 ((𝐴𝑋𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ V)
543adant1 1015 . . . 4 ((𝑆𝑉𝐴𝑋𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ V)
6 snexg 4184 . . . 4 (⟨𝐴, 𝐵⟩ ∈ V → {⟨𝐴, 𝐵⟩} ∈ V)
75, 6syl 14 . . 3 ((𝑆𝑉𝐴𝑋𝐵𝑊) → {⟨𝐴, 𝐵⟩} ∈ V)
8 unexg 4443 . . 3 (((𝑆 ↾ (V ∖ {𝐴})) ∈ V ∧ {⟨𝐴, 𝐵⟩} ∈ V) → ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}) ∈ V)
93, 7, 8syl2anc 411 . 2 ((𝑆𝑉𝐴𝑋𝐵𝑊) → ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}) ∈ V)
101, 9eqeltrd 2254 1 ((𝑆𝑉𝐴𝑋𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 978  wcel 2148  Vcvv 2737  cdif 3126  cun 3127  {csn 3592  cop 3595  cres 4628  (class class class)co 5874   sSet csts 12454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-res 4638  df-iota 5178  df-fun 5218  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-sets 12463
This theorem is referenced by:  setsabsd  12495  setscom  12496  setsslnid  12508  ressvalsets  12518  ressex  12519  fnmgp  13085  mgpvalg  13086  mgpex  13088  opprvalg  13194  opprex  13198
  Copyright terms: Public domain W3C validator