Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resss | GIF version |
Description: A class includes its restriction. Exercise 15 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
resss | ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 4623 | . 2 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
2 | inss1 3347 | . 2 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ 𝐴 | |
3 | 1, 2 | eqsstri 3179 | 1 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
Colors of variables: wff set class |
Syntax hints: Vcvv 2730 ∩ cin 3120 ⊆ wss 3121 × cxp 4609 ↾ cres 4613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-res 4623 |
This theorem is referenced by: relssres 4929 resexg 4931 iss 4937 cocnvres 5135 relresfld 5140 relcoi1 5142 funres 5239 funres11 5270 funcnvres 5271 2elresin 5309 fssres 5373 foimacnv 5460 tposss 6225 dftpos4 6242 smores 6271 smores2 6273 caserel 7064 txss12 13060 txbasval 13061 |
Copyright terms: Public domain | W3C validator |