ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resss GIF version

Theorem resss 4891
Description: A class includes its restriction. Exercise 15 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
resss (𝐴𝐵) ⊆ 𝐴

Proof of Theorem resss
StepHypRef Expression
1 df-res 4599 . 2 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
2 inss1 3327 . 2 (𝐴 ∩ (𝐵 × V)) ⊆ 𝐴
31, 2eqsstri 3160 1 (𝐴𝐵) ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  Vcvv 2712  cin 3101  wss 3102   × cxp 4585  cres 4589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-in 3108  df-ss 3115  df-res 4599
This theorem is referenced by:  relssres  4905  resexg  4907  iss  4913  cocnvres  5111  relresfld  5116  relcoi1  5118  funres  5212  funres11  5243  funcnvres  5244  2elresin  5282  fssres  5346  foimacnv  5433  tposss  6194  dftpos4  6211  smores  6240  smores2  6242  caserel  7032  txss12  12708  txbasval  12709
  Copyright terms: Public domain W3C validator