![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resss | GIF version |
Description: A class includes its restriction. Exercise 15 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
resss | ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 4671 | . 2 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
2 | inss1 3379 | . 2 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ 𝐴 | |
3 | 1, 2 | eqsstri 3211 | 1 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
Colors of variables: wff set class |
Syntax hints: Vcvv 2760 ∩ cin 3152 ⊆ wss 3153 × cxp 4657 ↾ cres 4661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 df-ss 3166 df-res 4671 |
This theorem is referenced by: relssres 4980 resexg 4982 iss 4988 cocnvres 5190 relresfld 5195 relcoi1 5197 funres 5295 funres11 5326 funcnvres 5327 2elresin 5365 fssres 5429 foimacnv 5518 tposss 6299 dftpos4 6316 smores 6345 smores2 6347 caserel 7146 txss12 14434 txbasval 14435 |
Copyright terms: Public domain | W3C validator |