ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resss GIF version

Theorem resss 4697
Description: A class includes its restriction. Exercise 15 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
resss (𝐴𝐵) ⊆ 𝐴

Proof of Theorem resss
StepHypRef Expression
1 df-res 4416 . 2 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
2 inss1 3206 . 2 (𝐴 ∩ (𝐵 × V)) ⊆ 𝐴
31, 2eqsstri 3042 1 (𝐴𝐵) ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  Vcvv 2614  cin 2985  wss 2986   × cxp 4402  cres 4406
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-v 2616  df-in 2992  df-ss 2999  df-res 4416
This theorem is referenced by:  relssres  4710  resexg  4712  iss  4718  cocnvres  4912  relresfld  4917  relcoi1  4919  funres  5011  funres11  5042  funcnvres  5043  2elresin  5081  fssres  5138  foimacnv  5222  tposss  5946  dftpos4  5963  smores  5992  smores2  5994  caserel  6699
  Copyright terms: Public domain W3C validator