ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resss GIF version

Theorem resss 5028
Description: A class includes its restriction. Exercise 15 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
resss (𝐴𝐵) ⊆ 𝐴

Proof of Theorem resss
StepHypRef Expression
1 df-res 4730 . 2 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
2 inss1 3424 . 2 (𝐴 ∩ (𝐵 × V)) ⊆ 𝐴
31, 2eqsstri 3256 1 (𝐴𝐵) ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  Vcvv 2799  cin 3196  wss 3197   × cxp 4716  cres 4720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-res 4730
This theorem is referenced by:  relssres  5042  resexg  5044  iss  5050  cocnvres  5252  relresfld  5257  relcoi1  5259  funres  5358  funres11  5392  funcnvres  5393  2elresin  5433  fssres  5500  foimacnv  5589  tposss  6390  dftpos4  6407  smores  6436  smores2  6438  caserel  7250  txss12  14934  txbasval  14935
  Copyright terms: Public domain W3C validator