| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resss | GIF version | ||
| Description: A class includes its restriction. Exercise 15 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| resss | ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 4730 | . 2 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 2 | inss1 3424 | . 2 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ 𝐴 | |
| 3 | 1, 2 | eqsstri 3256 | 1 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: Vcvv 2799 ∩ cin 3196 ⊆ wss 3197 × cxp 4716 ↾ cres 4720 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-res 4730 |
| This theorem is referenced by: relssres 5042 resexg 5044 iss 5050 cocnvres 5252 relresfld 5257 relcoi1 5259 funres 5358 funres11 5392 funcnvres 5393 2elresin 5433 fssres 5500 foimacnv 5589 tposss 6390 dftpos4 6407 smores 6436 smores2 6438 caserel 7250 txss12 14934 txbasval 14935 |
| Copyright terms: Public domain | W3C validator |