ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resss GIF version

Theorem resss 4930
Description: A class includes its restriction. Exercise 15 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
resss (𝐴𝐵) ⊆ 𝐴

Proof of Theorem resss
StepHypRef Expression
1 df-res 4637 . 2 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
2 inss1 3355 . 2 (𝐴 ∩ (𝐵 × V)) ⊆ 𝐴
31, 2eqsstri 3187 1 (𝐴𝐵) ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  Vcvv 2737  cin 3128  wss 3129   × cxp 4623  cres 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2739  df-in 3135  df-ss 3142  df-res 4637
This theorem is referenced by:  relssres  4944  resexg  4946  iss  4952  cocnvres  5152  relresfld  5157  relcoi1  5159  funres  5256  funres11  5287  funcnvres  5288  2elresin  5326  fssres  5390  foimacnv  5478  tposss  6244  dftpos4  6261  smores  6290  smores2  6292  caserel  7083  txss12  13637  txbasval  13638
  Copyright terms: Public domain W3C validator