| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resss | GIF version | ||
| Description: A class includes its restriction. Exercise 15 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| resss | ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 4676 | . 2 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 2 | inss1 3384 | . 2 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ 𝐴 | |
| 3 | 1, 2 | eqsstri 3216 | 1 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: Vcvv 2763 ∩ cin 3156 ⊆ wss 3157 × cxp 4662 ↾ cres 4666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-res 4676 |
| This theorem is referenced by: relssres 4985 resexg 4987 iss 4993 cocnvres 5195 relresfld 5200 relcoi1 5202 funres 5300 funres11 5331 funcnvres 5332 2elresin 5372 fssres 5436 foimacnv 5525 tposss 6313 dftpos4 6330 smores 6359 smores2 6361 caserel 7162 txss12 14586 txbasval 14587 |
| Copyright terms: Public domain | W3C validator |