ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climres GIF version

Theorem climres 11314
Description: A function restricted to upper integers converges iff the original function converges. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
climres ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → ((𝐹 ↾ (ℤ𝑀)) ⇝ 𝐴𝐹𝐴))

Proof of Theorem climres
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . 2 (ℤ𝑀) = (ℤ𝑀)
2 resexg 4949 . . 3 (𝐹𝑉 → (𝐹 ↾ (ℤ𝑀)) ∈ V)
32adantl 277 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ↾ (ℤ𝑀)) ∈ V)
4 simpr 110 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → 𝐹𝑉)
5 simpl 109 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → 𝑀 ∈ ℤ)
6 fvres 5541 . . 3 (𝑘 ∈ (ℤ𝑀) → ((𝐹 ↾ (ℤ𝑀))‘𝑘) = (𝐹𝑘))
76adantl 277 . 2 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹 ↾ (ℤ𝑀))‘𝑘) = (𝐹𝑘))
81, 3, 4, 5, 7climeq 11310 1 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → ((𝐹 ↾ (ℤ𝑀)) ⇝ 𝐴𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  Vcvv 2739   class class class wbr 4005  cres 4630  cfv 5218  cz 9256  cuz 9531  cli 11289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-0id 7922  ax-rnegex 7923  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-inn 8923  df-n0 9180  df-z 9257  df-uz 9532  df-clim 11290
This theorem is referenced by:  sumrbdc  11390  expcnv  11515  prodrbdclem2  11584
  Copyright terms: Public domain W3C validator