ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuen1 GIF version

Theorem reuen1 6518
Description: Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
reuen1 (∃!𝑥𝐴 𝜑 ↔ {𝑥𝐴𝜑} ≈ 1𝑜)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem reuen1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 reusn 3513 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃𝑦{𝑥𝐴𝜑} = {𝑦})
2 en1 6516 . 2 ({𝑥𝐴𝜑} ≈ 1𝑜 ↔ ∃𝑦{𝑥𝐴𝜑} = {𝑦})
31, 2bitr4i 185 1 (∃!𝑥𝐴 𝜑 ↔ {𝑥𝐴𝜑} ≈ 1𝑜)
Colors of variables: wff set class
Syntax hints:  wb 103   = wceq 1289  wex 1426  ∃!wreu 2361  {crab 2363  {csn 3446   class class class wbr 3845  1𝑜c1o 6174  cen 6455
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-id 4120  df-suc 4198  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-1o 6181  df-en 6458
This theorem is referenced by:  euen1  6519
  Copyright terms: Public domain W3C validator