ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuen1 GIF version

Theorem reuen1 6767
Description: Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
reuen1 (∃!𝑥𝐴 𝜑 ↔ {𝑥𝐴𝜑} ≈ 1o)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem reuen1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 reusn 3647 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃𝑦{𝑥𝐴𝜑} = {𝑦})
2 en1 6765 . 2 ({𝑥𝐴𝜑} ≈ 1o ↔ ∃𝑦{𝑥𝐴𝜑} = {𝑦})
31, 2bitr4i 186 1 (∃!𝑥𝐴 𝜑 ↔ {𝑥𝐴𝜑} ≈ 1o)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1343  wex 1480  ∃!wreu 2446  {crab 2448  {csn 3576   class class class wbr 3982  1oc1o 6377  cen 6704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1o 6384  df-en 6707
This theorem is referenced by:  euen1  6768
  Copyright terms: Public domain W3C validator