![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reuen1 | GIF version |
Description: Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014.) |
Ref | Expression |
---|---|
reuen1 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ {𝑥 ∈ 𝐴 ∣ 𝜑} ≈ 1𝑜) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reusn 3513 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦{𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦}) | |
2 | en1 6516 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≈ 1𝑜 ↔ ∃𝑦{𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦}) | |
3 | 1, 2 | bitr4i 185 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ {𝑥 ∈ 𝐴 ∣ 𝜑} ≈ 1𝑜) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 = wceq 1289 ∃wex 1426 ∃!wreu 2361 {crab 2363 {csn 3446 class class class wbr 3845 1𝑜c1o 6174 ≈ cen 6455 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-nul 3965 ax-pow 4009 ax-pr 4036 ax-un 4260 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-reu 2366 df-rab 2368 df-v 2621 df-sbc 2841 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-opab 3900 df-id 4120 df-suc 4198 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-f1 5020 df-fo 5021 df-f1o 5022 df-fv 5023 df-1o 6181 df-en 6458 |
This theorem is referenced by: euen1 6519 |
Copyright terms: Public domain | W3C validator |