| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isgrp | GIF version | ||
| Description: The predicate "is a group". (This theorem demonstrates the use of symbols as variable names, first proposed by FL in 2010.) (Contributed by NM, 17-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| isgrp.b | ⊢ 𝐵 = (Base‘𝐺) |
| isgrp.p | ⊢ + = (+g‘𝐺) |
| isgrp.z | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| isgrp | ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ 𝐵 ∃𝑚 ∈ 𝐵 (𝑚 + 𝑎) = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5561 | . . . 4 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
| 2 | isgrp.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | 1, 2 | eqtr4di 2247 | . . 3 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
| 4 | fveq2 5561 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) | |
| 5 | isgrp.p | . . . . . . 7 ⊢ + = (+g‘𝐺) | |
| 6 | 4, 5 | eqtr4di 2247 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
| 7 | 6 | oveqd 5942 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑚(+g‘𝑔)𝑎) = (𝑚 + 𝑎)) |
| 8 | fveq2 5561 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (0g‘𝑔) = (0g‘𝐺)) | |
| 9 | isgrp.z | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
| 10 | 8, 9 | eqtr4di 2247 | . . . . 5 ⊢ (𝑔 = 𝐺 → (0g‘𝑔) = 0 ) |
| 11 | 7, 10 | eqeq12d 2211 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑚(+g‘𝑔)𝑎) = (0g‘𝑔) ↔ (𝑚 + 𝑎) = 0 )) |
| 12 | 3, 11 | rexeqbidv 2710 | . . 3 ⊢ (𝑔 = 𝐺 → (∃𝑚 ∈ (Base‘𝑔)(𝑚(+g‘𝑔)𝑎) = (0g‘𝑔) ↔ ∃𝑚 ∈ 𝐵 (𝑚 + 𝑎) = 0 )) |
| 13 | 3, 12 | raleqbidv 2709 | . 2 ⊢ (𝑔 = 𝐺 → (∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g‘𝑔)𝑎) = (0g‘𝑔) ↔ ∀𝑎 ∈ 𝐵 ∃𝑚 ∈ 𝐵 (𝑚 + 𝑎) = 0 )) |
| 14 | df-grp 13205 | . 2 ⊢ Grp = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g‘𝑔)𝑎) = (0g‘𝑔)} | |
| 15 | 13, 14 | elrab2 2923 | 1 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ 𝐵 ∃𝑚 ∈ 𝐵 (𝑚 + 𝑎) = 0 )) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 ‘cfv 5259 (class class class)co 5925 Basecbs 12703 +gcplusg 12780 0gc0g 12958 Mndcmnd 13118 Grpcgrp 13202 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-grp 13205 |
| This theorem is referenced by: grpmnd 13209 grpinvex 13212 grppropd 13219 isgrpd2e 13222 grp1 13308 ghmgrp 13324 |
| Copyright terms: Public domain | W3C validator |