![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isgrp | GIF version |
Description: The predicate "is a group". (This theorem demonstrates the use of symbols as variable names, first proposed by FL in 2010.) (Contributed by NM, 17-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
isgrp.b | ⊢ 𝐵 = (Base‘𝐺) |
isgrp.p | ⊢ + = (+g‘𝐺) |
isgrp.z | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
isgrp | ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ 𝐵 ∃𝑚 ∈ 𝐵 (𝑚 + 𝑎) = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5554 | . . . 4 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
2 | isgrp.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | 1, 2 | eqtr4di 2244 | . . 3 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
4 | fveq2 5554 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) | |
5 | isgrp.p | . . . . . . 7 ⊢ + = (+g‘𝐺) | |
6 | 4, 5 | eqtr4di 2244 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
7 | 6 | oveqd 5935 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑚(+g‘𝑔)𝑎) = (𝑚 + 𝑎)) |
8 | fveq2 5554 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (0g‘𝑔) = (0g‘𝐺)) | |
9 | isgrp.z | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
10 | 8, 9 | eqtr4di 2244 | . . . . 5 ⊢ (𝑔 = 𝐺 → (0g‘𝑔) = 0 ) |
11 | 7, 10 | eqeq12d 2208 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑚(+g‘𝑔)𝑎) = (0g‘𝑔) ↔ (𝑚 + 𝑎) = 0 )) |
12 | 3, 11 | rexeqbidv 2707 | . . 3 ⊢ (𝑔 = 𝐺 → (∃𝑚 ∈ (Base‘𝑔)(𝑚(+g‘𝑔)𝑎) = (0g‘𝑔) ↔ ∃𝑚 ∈ 𝐵 (𝑚 + 𝑎) = 0 )) |
13 | 3, 12 | raleqbidv 2706 | . 2 ⊢ (𝑔 = 𝐺 → (∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g‘𝑔)𝑎) = (0g‘𝑔) ↔ ∀𝑎 ∈ 𝐵 ∃𝑚 ∈ 𝐵 (𝑚 + 𝑎) = 0 )) |
14 | df-grp 13075 | . 2 ⊢ Grp = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g‘𝑔)𝑎) = (0g‘𝑔)} | |
15 | 13, 14 | elrab2 2919 | 1 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ 𝐵 ∃𝑚 ∈ 𝐵 (𝑚 + 𝑎) = 0 )) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 0gc0g 12867 Mndcmnd 12997 Grpcgrp 13072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 df-grp 13075 |
This theorem is referenced by: grpmnd 13079 grpinvex 13082 grppropd 13089 isgrpd2e 13092 grp1 13178 ghmgrp 13188 |
Copyright terms: Public domain | W3C validator |