ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isgrp GIF version

Theorem isgrp 13078
Description: The predicate "is a group". (This theorem demonstrates the use of symbols as variable names, first proposed by FL in 2010.) (Contributed by NM, 17-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
isgrp.b 𝐵 = (Base‘𝐺)
isgrp.p + = (+g𝐺)
isgrp.z 0 = (0g𝐺)
Assertion
Ref Expression
isgrp (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎𝐵𝑚𝐵 (𝑚 + 𝑎) = 0 ))
Distinct variable groups:   𝑚,𝑎,𝐵   𝐺,𝑎,𝑚
Allowed substitution hints:   + (𝑚,𝑎)   0 (𝑚,𝑎)

Proof of Theorem isgrp
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 5554 . . . 4 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
2 isgrp.b . . . 4 𝐵 = (Base‘𝐺)
31, 2eqtr4di 2244 . . 3 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
4 fveq2 5554 . . . . . . 7 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
5 isgrp.p . . . . . . 7 + = (+g𝐺)
64, 5eqtr4di 2244 . . . . . 6 (𝑔 = 𝐺 → (+g𝑔) = + )
76oveqd 5935 . . . . 5 (𝑔 = 𝐺 → (𝑚(+g𝑔)𝑎) = (𝑚 + 𝑎))
8 fveq2 5554 . . . . . 6 (𝑔 = 𝐺 → (0g𝑔) = (0g𝐺))
9 isgrp.z . . . . . 6 0 = (0g𝐺)
108, 9eqtr4di 2244 . . . . 5 (𝑔 = 𝐺 → (0g𝑔) = 0 )
117, 10eqeq12d 2208 . . . 4 (𝑔 = 𝐺 → ((𝑚(+g𝑔)𝑎) = (0g𝑔) ↔ (𝑚 + 𝑎) = 0 ))
123, 11rexeqbidv 2707 . . 3 (𝑔 = 𝐺 → (∃𝑚 ∈ (Base‘𝑔)(𝑚(+g𝑔)𝑎) = (0g𝑔) ↔ ∃𝑚𝐵 (𝑚 + 𝑎) = 0 ))
133, 12raleqbidv 2706 . 2 (𝑔 = 𝐺 → (∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g𝑔)𝑎) = (0g𝑔) ↔ ∀𝑎𝐵𝑚𝐵 (𝑚 + 𝑎) = 0 ))
14 df-grp 13075 . 2 Grp = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g𝑔)𝑎) = (0g𝑔)}
1513, 14elrab2 2919 1 (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎𝐵𝑚𝐵 (𝑚 + 𝑎) = 0 ))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  wrex 2473  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  0gc0g 12867  Mndcmnd 12997  Grpcgrp 13072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921  df-grp 13075
This theorem is referenced by:  grpmnd  13079  grpinvex  13082  grppropd  13089  isgrpd2e  13092  grp1  13178  ghmgrp  13188
  Copyright terms: Public domain W3C validator