![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isgrpd2e | GIF version |
Description: Deduce a group from its properties. In this version of isgrpd2 13093, we don't assume there is an expression for the inverse of 𝑥. (Contributed by NM, 10-Aug-2013.) |
Ref | Expression |
---|---|
isgrpd2.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
isgrpd2.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
isgrpd2.z | ⊢ (𝜑 → 0 = (0g‘𝐺)) |
isgrpd2.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
isgrpd2e.n | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) |
Ref | Expression |
---|---|
isgrpd2e | ⊢ (𝜑 → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgrpd2.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
2 | isgrpd2e.n | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) | |
3 | 2 | ralrimiva 2567 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) |
4 | isgrpd2.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
5 | isgrpd2.p | . . . . . . 7 ⊢ (𝜑 → + = (+g‘𝐺)) | |
6 | 5 | oveqd 5935 | . . . . . 6 ⊢ (𝜑 → (𝑦 + 𝑥) = (𝑦(+g‘𝐺)𝑥)) |
7 | isgrpd2.z | . . . . . 6 ⊢ (𝜑 → 0 = (0g‘𝐺)) | |
8 | 6, 7 | eqeq12d 2208 | . . . . 5 ⊢ (𝜑 → ((𝑦 + 𝑥) = 0 ↔ (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
9 | 4, 8 | rexeqbidv 2707 | . . . 4 ⊢ (𝜑 → (∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ↔ ∃𝑦 ∈ (Base‘𝐺)(𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
10 | 4, 9 | raleqbidv 2706 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ↔ ∀𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
11 | 3, 10 | mpbid 147 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) |
12 | eqid 2193 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
13 | eqid 2193 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
14 | eqid 2193 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
15 | 12, 13, 14 | isgrp 13078 | . 2 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
16 | 1, 11, 15 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐺 ∈ Grp) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 0gc0g 12867 Mndcmnd 12997 Grpcgrp 13072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 df-grp 13075 |
This theorem is referenced by: isgrpd2 13093 isgrpde 13094 |
Copyright terms: Public domain | W3C validator |