ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isgrpd2e GIF version

Theorem isgrpd2e 13092
Description: Deduce a group from its properties. In this version of isgrpd2 13093, we don't assume there is an expression for the inverse of 𝑥. (Contributed by NM, 10-Aug-2013.)
Hypotheses
Ref Expression
isgrpd2.b (𝜑𝐵 = (Base‘𝐺))
isgrpd2.p (𝜑+ = (+g𝐺))
isgrpd2.z (𝜑0 = (0g𝐺))
isgrpd2.g (𝜑𝐺 ∈ Mnd)
isgrpd2e.n ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )
Assertion
Ref Expression
isgrpd2e (𝜑𝐺 ∈ Grp)
Distinct variable groups:   𝑥,𝑦, +   𝑦, 0   𝑥,𝐵,𝑦   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦
Allowed substitution hint:   0 (𝑥)

Proof of Theorem isgrpd2e
StepHypRef Expression
1 isgrpd2.g . 2 (𝜑𝐺 ∈ Mnd)
2 isgrpd2e.n . . . 4 ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )
32ralrimiva 2567 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑦 + 𝑥) = 0 )
4 isgrpd2.b . . . 4 (𝜑𝐵 = (Base‘𝐺))
5 isgrpd2.p . . . . . . 7 (𝜑+ = (+g𝐺))
65oveqd 5935 . . . . . 6 (𝜑 → (𝑦 + 𝑥) = (𝑦(+g𝐺)𝑥))
7 isgrpd2.z . . . . . 6 (𝜑0 = (0g𝐺))
86, 7eqeq12d 2208 . . . . 5 (𝜑 → ((𝑦 + 𝑥) = 0 ↔ (𝑦(+g𝐺)𝑥) = (0g𝐺)))
94, 8rexeqbidv 2707 . . . 4 (𝜑 → (∃𝑦𝐵 (𝑦 + 𝑥) = 0 ↔ ∃𝑦 ∈ (Base‘𝐺)(𝑦(+g𝐺)𝑥) = (0g𝐺)))
104, 9raleqbidv 2706 . . 3 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝑦 + 𝑥) = 0 ↔ ∀𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑦(+g𝐺)𝑥) = (0g𝐺)))
113, 10mpbid 147 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑦(+g𝐺)𝑥) = (0g𝐺))
12 eqid 2193 . . 3 (Base‘𝐺) = (Base‘𝐺)
13 eqid 2193 . . 3 (+g𝐺) = (+g𝐺)
14 eqid 2193 . . 3 (0g𝐺) = (0g𝐺)
1512, 13, 14isgrp 13078 . 2 (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑦(+g𝐺)𝑥) = (0g𝐺)))
161, 11, 15sylanbrc 417 1 (𝜑𝐺 ∈ Grp)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472  wrex 2473  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  0gc0g 12867  Mndcmnd 12997  Grpcgrp 13072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921  df-grp 13075
This theorem is referenced by:  isgrpd2  13093  isgrpde  13094
  Copyright terms: Public domain W3C validator