| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > isgrpd2e | GIF version | ||
| Description: Deduce a group from its properties. In this version of isgrpd2 13153, we don't assume there is an expression for the inverse of 𝑥. (Contributed by NM, 10-Aug-2013.) | 
| Ref | Expression | 
|---|---|
| isgrpd2.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | 
| isgrpd2.p | ⊢ (𝜑 → + = (+g‘𝐺)) | 
| isgrpd2.z | ⊢ (𝜑 → 0 = (0g‘𝐺)) | 
| isgrpd2.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) | 
| isgrpd2e.n | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) | 
| Ref | Expression | 
|---|---|
| isgrpd2e | ⊢ (𝜑 → 𝐺 ∈ Grp) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isgrpd2.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
| 2 | isgrpd2e.n | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) | |
| 3 | 2 | ralrimiva 2570 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) | 
| 4 | isgrpd2.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
| 5 | isgrpd2.p | . . . . . . 7 ⊢ (𝜑 → + = (+g‘𝐺)) | |
| 6 | 5 | oveqd 5939 | . . . . . 6 ⊢ (𝜑 → (𝑦 + 𝑥) = (𝑦(+g‘𝐺)𝑥)) | 
| 7 | isgrpd2.z | . . . . . 6 ⊢ (𝜑 → 0 = (0g‘𝐺)) | |
| 8 | 6, 7 | eqeq12d 2211 | . . . . 5 ⊢ (𝜑 → ((𝑦 + 𝑥) = 0 ↔ (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) | 
| 9 | 4, 8 | rexeqbidv 2710 | . . . 4 ⊢ (𝜑 → (∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ↔ ∃𝑦 ∈ (Base‘𝐺)(𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) | 
| 10 | 4, 9 | raleqbidv 2709 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ↔ ∀𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) | 
| 11 | 3, 10 | mpbid 147 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) | 
| 12 | eqid 2196 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 13 | eqid 2196 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 14 | eqid 2196 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 15 | 12, 13, 14 | isgrp 13138 | . 2 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) | 
| 16 | 1, 11, 15 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐺 ∈ Grp) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 +gcplusg 12755 0gc0g 12927 Mndcmnd 13057 Grpcgrp 13132 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-grp 13135 | 
| This theorem is referenced by: isgrpd2 13153 isgrpde 13154 | 
| Copyright terms: Public domain | W3C validator |