ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grp1 GIF version

Theorem grp1 12832
Description: The (smallest) structure representing a trivial group. According to Wikipedia ("Trivial group", 28-Apr-2019, https://en.wikipedia.org/wiki/Trivial_group) "In mathematics, a trivial group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element". (Contributed by AV, 28-Apr-2019.)
Hypothesis
Ref Expression
grp1.m 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
Assertion
Ref Expression
grp1 (𝐼𝑉𝑀 ∈ Grp)

Proof of Theorem grp1
Dummy variables 𝑒 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grp1.m . . 3 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
21mnd1 12706 . 2 (𝐼𝑉𝑀 ∈ Mnd)
3 df-ov 5865 . . . . 5 (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩)
4 opexg 4219 . . . . . . 7 ((𝐼𝑉𝐼𝑉) → ⟨𝐼, 𝐼⟩ ∈ V)
54anidms 397 . . . . . 6 (𝐼𝑉 → ⟨𝐼, 𝐼⟩ ∈ V)
6 fvsng 5701 . . . . . 6 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
75, 6mpancom 422 . . . . 5 (𝐼𝑉 → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
83, 7eqtrid 2218 . . . 4 (𝐼𝑉 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)
91mnd1id 12707 . . . 4 (𝐼𝑉 → (0g𝑀) = 𝐼)
108, 9eqtr4d 2209 . . 3 (𝐼𝑉 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀))
11 oveq2 5870 . . . . . . 7 (𝑖 = 𝐼 → (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
1211eqeq1d 2182 . . . . . 6 (𝑖 = 𝐼 → ((𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀) ↔ (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀)))
1312rexbidv 2474 . . . . 5 (𝑖 = 𝐼 → (∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀) ↔ ∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀)))
1413ralsng 3626 . . . 4 (𝐼𝑉 → (∀𝑖 ∈ {𝐼}∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀) ↔ ∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀)))
15 oveq1 5869 . . . . . 6 (𝑒 = 𝐼 → (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
1615eqeq1d 2182 . . . . 5 (𝑒 = 𝐼 → ((𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀) ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀)))
1716rexsng 3627 . . . 4 (𝐼𝑉 → (∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀) ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀)))
1814, 17bitrd 189 . . 3 (𝐼𝑉 → (∀𝑖 ∈ {𝐼}∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀) ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀)))
1910, 18mpbird 168 . 2 (𝐼𝑉 → ∀𝑖 ∈ {𝐼}∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀))
20 eqid 2173 . . . 4 (Base‘𝑀) = (Base‘𝑀)
21 eqid 2173 . . . 4 (+g𝑀) = (+g𝑀)
22 eqid 2173 . . . 4 (0g𝑀) = (0g𝑀)
2320, 21, 22isgrp 12741 . . 3 (𝑀 ∈ Grp ↔ (𝑀 ∈ Mnd ∧ ∀𝑖 ∈ (Base‘𝑀)∃𝑒 ∈ (Base‘𝑀)(𝑒(+g𝑀)𝑖) = (0g𝑀)))
24 snexg 4176 . . . . . 6 (𝐼𝑉 → {𝐼} ∈ V)
25 opexg 4219 . . . . . . . 8 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V)
265, 25mpancom 422 . . . . . . 7 (𝐼𝑉 → ⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V)
27 snexg 4176 . . . . . . 7 (⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V)
2826, 27syl 14 . . . . . 6 (𝐼𝑉 → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V)
291grpbaseg 12535 . . . . . 6 (({𝐼} ∈ V ∧ {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V) → {𝐼} = (Base‘𝑀))
3024, 28, 29syl2anc 411 . . . . 5 (𝐼𝑉 → {𝐼} = (Base‘𝑀))
311grpplusgg 12536 . . . . . . . . 9 (({𝐼} ∈ V ∧ {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V) → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
3224, 28, 31syl2anc 411 . . . . . . . 8 (𝐼𝑉 → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
3332oveqd 5879 . . . . . . 7 (𝐼𝑉 → (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (𝑒(+g𝑀)𝑖))
3433eqeq1d 2182 . . . . . 6 (𝐼𝑉 → ((𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀) ↔ (𝑒(+g𝑀)𝑖) = (0g𝑀)))
3530, 34rexeqbidv 2681 . . . . 5 (𝐼𝑉 → (∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀) ↔ ∃𝑒 ∈ (Base‘𝑀)(𝑒(+g𝑀)𝑖) = (0g𝑀)))
3630, 35raleqbidv 2680 . . . 4 (𝐼𝑉 → (∀𝑖 ∈ {𝐼}∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀) ↔ ∀𝑖 ∈ (Base‘𝑀)∃𝑒 ∈ (Base‘𝑀)(𝑒(+g𝑀)𝑖) = (0g𝑀)))
3736anbi2d 464 . . 3 (𝐼𝑉 → ((𝑀 ∈ Mnd ∧ ∀𝑖 ∈ {𝐼}∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀)) ↔ (𝑀 ∈ Mnd ∧ ∀𝑖 ∈ (Base‘𝑀)∃𝑒 ∈ (Base‘𝑀)(𝑒(+g𝑀)𝑖) = (0g𝑀))))
3823, 37bitr4id 200 . 2 (𝐼𝑉 → (𝑀 ∈ Grp ↔ (𝑀 ∈ Mnd ∧ ∀𝑖 ∈ {𝐼}∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀))))
392, 19, 38mpbir2and 942 1 (𝐼𝑉𝑀 ∈ Grp)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1351  wcel 2144  wral 2451  wrex 2452  Vcvv 2733  {csn 3586  {cpr 3587  cop 3589  cfv 5205  (class class class)co 5862  ndxcnx 12422  Basecbs 12425  +gcplusg 12489  0gc0g 12623  Mndcmnd 12679  Grpcgrp 12735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 612  ax-in2 613  ax-io 707  ax-5 1443  ax-7 1444  ax-gen 1445  ax-ie1 1489  ax-ie2 1490  ax-8 1500  ax-10 1501  ax-11 1502  ax-i12 1503  ax-bndl 1505  ax-4 1506  ax-17 1522  ax-i9 1526  ax-ial 1530  ax-i5r 1531  ax-13 2146  ax-14 2147  ax-ext 2155  ax-sep 4113  ax-pow 4166  ax-pr 4200  ax-un 4424  ax-setind 4527  ax-cnex 7874  ax-resscn 7875  ax-1cn 7876  ax-1re 7877  ax-icn 7878  ax-addcl 7879  ax-addrcl 7880  ax-mulcl 7881  ax-addcom 7883  ax-addass 7885  ax-i2m1 7888  ax-0lt1 7889  ax-0id 7891  ax-rnegex 7892  ax-pre-ltirr 7895  ax-pre-ltadd 7899
This theorem depends on definitions:  df-bi 117  df-3an 978  df-tru 1354  df-fal 1357  df-nf 1457  df-sb 1759  df-eu 2025  df-mo 2026  df-clab 2160  df-cleq 2166  df-clel 2169  df-nfc 2304  df-ne 2344  df-nel 2439  df-ral 2456  df-rex 2457  df-reu 2458  df-rmo 2459  df-rab 2460  df-v 2735  df-sbc 2959  df-csb 3053  df-dif 3126  df-un 3128  df-in 3130  df-ss 3137  df-nul 3418  df-pw 3571  df-sn 3592  df-pr 3593  df-op 3595  df-uni 3803  df-int 3838  df-br 3996  df-opab 4057  df-mpt 4058  df-id 4284  df-xp 4623  df-rel 4624  df-cnv 4625  df-co 4626  df-dm 4627  df-rn 4628  df-res 4629  df-iota 5167  df-fun 5207  df-fn 5208  df-fv 5213  df-riota 5818  df-ov 5865  df-pnf 7965  df-mnf 7966  df-ltxr 7968  df-inn 8888  df-2 8946  df-ndx 12428  df-slot 12429  df-base 12431  df-plusg 12502  df-0g 12625  df-mgm 12637  df-sgrp 12670  df-mnd 12680  df-grp 12738
This theorem is referenced by:  grp1inv  12833
  Copyright terms: Public domain W3C validator