ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grp1 GIF version

Theorem grp1 13356
Description: The (smallest) structure representing a trivial group. According to Wikipedia ("Trivial group", 28-Apr-2019, https://en.wikipedia.org/wiki/Trivial_group) "In mathematics, a trivial group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element". (Contributed by AV, 28-Apr-2019.)
Hypothesis
Ref Expression
grp1.m 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
Assertion
Ref Expression
grp1 (𝐼𝑉𝑀 ∈ Grp)

Proof of Theorem grp1
Dummy variables 𝑒 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grp1.m . . 3 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
21mnd1 13205 . 2 (𝐼𝑉𝑀 ∈ Mnd)
3 df-ov 5937 . . . . 5 (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩)
4 opexg 4271 . . . . . . 7 ((𝐼𝑉𝐼𝑉) → ⟨𝐼, 𝐼⟩ ∈ V)
54anidms 397 . . . . . 6 (𝐼𝑉 → ⟨𝐼, 𝐼⟩ ∈ V)
6 fvsng 5770 . . . . . 6 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
75, 6mpancom 422 . . . . 5 (𝐼𝑉 → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
83, 7eqtrid 2249 . . . 4 (𝐼𝑉 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)
91mnd1id 13206 . . . 4 (𝐼𝑉 → (0g𝑀) = 𝐼)
108, 9eqtr4d 2240 . . 3 (𝐼𝑉 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀))
11 oveq2 5942 . . . . . . 7 (𝑖 = 𝐼 → (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
1211eqeq1d 2213 . . . . . 6 (𝑖 = 𝐼 → ((𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀) ↔ (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀)))
1312rexbidv 2506 . . . . 5 (𝑖 = 𝐼 → (∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀) ↔ ∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀)))
1413ralsng 3672 . . . 4 (𝐼𝑉 → (∀𝑖 ∈ {𝐼}∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀) ↔ ∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀)))
15 oveq1 5941 . . . . . 6 (𝑒 = 𝐼 → (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
1615eqeq1d 2213 . . . . 5 (𝑒 = 𝐼 → ((𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀) ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀)))
1716rexsng 3673 . . . 4 (𝐼𝑉 → (∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀) ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀)))
1814, 17bitrd 188 . . 3 (𝐼𝑉 → (∀𝑖 ∈ {𝐼}∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀) ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (0g𝑀)))
1910, 18mpbird 167 . 2 (𝐼𝑉 → ∀𝑖 ∈ {𝐼}∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀))
20 eqid 2204 . . . 4 (Base‘𝑀) = (Base‘𝑀)
21 eqid 2204 . . . 4 (+g𝑀) = (+g𝑀)
22 eqid 2204 . . . 4 (0g𝑀) = (0g𝑀)
2320, 21, 22isgrp 13256 . . 3 (𝑀 ∈ Grp ↔ (𝑀 ∈ Mnd ∧ ∀𝑖 ∈ (Base‘𝑀)∃𝑒 ∈ (Base‘𝑀)(𝑒(+g𝑀)𝑖) = (0g𝑀)))
24 snexg 4227 . . . . . 6 (𝐼𝑉 → {𝐼} ∈ V)
25 opexg 4271 . . . . . . . 8 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V)
265, 25mpancom 422 . . . . . . 7 (𝐼𝑉 → ⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V)
27 snexg 4227 . . . . . . 7 (⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V)
2826, 27syl 14 . . . . . 6 (𝐼𝑉 → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V)
291grpbaseg 12877 . . . . . 6 (({𝐼} ∈ V ∧ {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V) → {𝐼} = (Base‘𝑀))
3024, 28, 29syl2anc 411 . . . . 5 (𝐼𝑉 → {𝐼} = (Base‘𝑀))
311grpplusgg 12878 . . . . . . . . 9 (({𝐼} ∈ V ∧ {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V) → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
3224, 28, 31syl2anc 411 . . . . . . . 8 (𝐼𝑉 → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
3332oveqd 5951 . . . . . . 7 (𝐼𝑉 → (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (𝑒(+g𝑀)𝑖))
3433eqeq1d 2213 . . . . . 6 (𝐼𝑉 → ((𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀) ↔ (𝑒(+g𝑀)𝑖) = (0g𝑀)))
3530, 34rexeqbidv 2718 . . . . 5 (𝐼𝑉 → (∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀) ↔ ∃𝑒 ∈ (Base‘𝑀)(𝑒(+g𝑀)𝑖) = (0g𝑀)))
3630, 35raleqbidv 2717 . . . 4 (𝐼𝑉 → (∀𝑖 ∈ {𝐼}∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀) ↔ ∀𝑖 ∈ (Base‘𝑀)∃𝑒 ∈ (Base‘𝑀)(𝑒(+g𝑀)𝑖) = (0g𝑀)))
3736anbi2d 464 . . 3 (𝐼𝑉 → ((𝑀 ∈ Mnd ∧ ∀𝑖 ∈ {𝐼}∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀)) ↔ (𝑀 ∈ Mnd ∧ ∀𝑖 ∈ (Base‘𝑀)∃𝑒 ∈ (Base‘𝑀)(𝑒(+g𝑀)𝑖) = (0g𝑀))))
3823, 37bitr4id 199 . 2 (𝐼𝑉 → (𝑀 ∈ Grp ↔ (𝑀 ∈ Mnd ∧ ∀𝑖 ∈ {𝐼}∃𝑒 ∈ {𝐼} (𝑒{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑖) = (0g𝑀))))
392, 19, 38mpbir2and 946 1 (𝐼𝑉𝑀 ∈ Grp)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  wral 2483  wrex 2484  Vcvv 2771  {csn 3632  {cpr 3633  cop 3635  cfv 5268  (class class class)co 5934  ndxcnx 12748  Basecbs 12751  +gcplusg 12828  0gc0g 13006  Mndcmnd 13166  Grpcgrp 13250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-pre-ltirr 8019  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-iota 5229  df-fun 5270  df-fn 5271  df-fv 5276  df-riota 5889  df-ov 5937  df-pnf 8091  df-mnf 8092  df-ltxr 8094  df-inn 9019  df-2 9077  df-ndx 12754  df-slot 12755  df-base 12757  df-plusg 12841  df-0g 13008  df-mgm 13106  df-sgrp 13152  df-mnd 13167  df-grp 13253
This theorem is referenced by:  grp1inv  13357  ring1  13739
  Copyright terms: Public domain W3C validator