ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismnddef GIF version

Theorem ismnddef 12654
Description: The predicate "is a monoid", corresponding 1-to-1 to the definition. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 1-Feb-2020.)
Hypotheses
Ref Expression
ismnddef.b 𝐵 = (Base‘𝐺)
ismnddef.p + = (+g𝐺)
Assertion
Ref Expression
ismnddef (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
Distinct variable groups:   𝐵,𝑎,𝑒   + ,𝑎,𝑒
Allowed substitution hints:   𝐺(𝑒,𝑎)

Proof of Theorem ismnddef
Dummy variables 𝑏 𝑔 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 12473 . . . 4 Base Fn V
2 vex 2733 . . . 4 𝑔 ∈ V
3 funfvex 5513 . . . . 5 ((Fun Base ∧ 𝑔 ∈ dom Base) → (Base‘𝑔) ∈ V)
43funfni 5298 . . . 4 ((Base Fn V ∧ 𝑔 ∈ V) → (Base‘𝑔) ∈ V)
51, 2, 4mp2an 424 . . 3 (Base‘𝑔) ∈ V
6 plusgslid 12513 . . . . 5 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
76slotex 12443 . . . 4 (𝑔 ∈ V → (+g𝑔) ∈ V)
87elv 2734 . . 3 (+g𝑔) ∈ V
9 fveq2 5496 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
10 ismnddef.b . . . . . . 7 𝐵 = (Base‘𝐺)
119, 10eqtr4di 2221 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
1211eqeq2d 2182 . . . . 5 (𝑔 = 𝐺 → (𝑏 = (Base‘𝑔) ↔ 𝑏 = 𝐵))
13 fveq2 5496 . . . . . . 7 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
14 ismnddef.p . . . . . . 7 + = (+g𝐺)
1513, 14eqtr4di 2221 . . . . . 6 (𝑔 = 𝐺 → (+g𝑔) = + )
1615eqeq2d 2182 . . . . 5 (𝑔 = 𝐺 → (𝑝 = (+g𝑔) ↔ 𝑝 = + ))
1712, 16anbi12d 470 . . . 4 (𝑔 = 𝐺 → ((𝑏 = (Base‘𝑔) ∧ 𝑝 = (+g𝑔)) ↔ (𝑏 = 𝐵𝑝 = + )))
18 simpl 108 . . . . 5 ((𝑏 = 𝐵𝑝 = + ) → 𝑏 = 𝐵)
19 oveq 5859 . . . . . . . . 9 (𝑝 = + → (𝑒𝑝𝑎) = (𝑒 + 𝑎))
2019eqeq1d 2179 . . . . . . . 8 (𝑝 = + → ((𝑒𝑝𝑎) = 𝑎 ↔ (𝑒 + 𝑎) = 𝑎))
21 oveq 5859 . . . . . . . . 9 (𝑝 = + → (𝑎𝑝𝑒) = (𝑎 + 𝑒))
2221eqeq1d 2179 . . . . . . . 8 (𝑝 = + → ((𝑎𝑝𝑒) = 𝑎 ↔ (𝑎 + 𝑒) = 𝑎))
2320, 22anbi12d 470 . . . . . . 7 (𝑝 = + → (((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
2423adantl 275 . . . . . 6 ((𝑏 = 𝐵𝑝 = + ) → (((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
2518, 24raleqbidv 2677 . . . . 5 ((𝑏 = 𝐵𝑝 = + ) → (∀𝑎𝑏 ((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ∀𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
2618, 25rexeqbidv 2678 . . . 4 ((𝑏 = 𝐵𝑝 = + ) → (∃𝑒𝑏𝑎𝑏 ((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
2717, 26syl6bi 162 . . 3 (𝑔 = 𝐺 → ((𝑏 = (Base‘𝑔) ∧ 𝑝 = (+g𝑔)) → (∃𝑒𝑏𝑎𝑏 ((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))))
285, 8, 27sbc2iedv 3027 . 2 (𝑔 = 𝐺 → ([(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑒𝑏𝑎𝑏 ((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
29 df-mnd 12653 . 2 Mnd = {𝑔 ∈ Smgrp ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑒𝑏𝑎𝑏 ((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎)}
3028, 29elrab2 2889 1 (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1348  wcel 2141  wral 2448  wrex 2449  Vcvv 2730  [wsbc 2955   Fn wfn 5193  cfv 5198  (class class class)co 5853  Basecbs 12416  +gcplusg 12480  Smgrpcsgrp 12642  Mndcmnd 12652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-ov 5856  df-inn 8879  df-2 8937  df-ndx 12419  df-slot 12420  df-base 12422  df-plusg 12493  df-mnd 12653
This theorem is referenced by:  ismnd  12655  sgrpidmndm  12656  mndsgrp  12657  mnd1  12679
  Copyright terms: Public domain W3C validator