Step | Hyp | Ref
| Expression |
1 | | basfn 12522 |
. . . 4
β’ Base Fn
V |
2 | | vex 2742 |
. . . 4
β’ π β V |
3 | | funfvex 5534 |
. . . . 5
β’ ((Fun
Base β§ π β dom
Base) β (Baseβπ)
β V) |
4 | 3 | funfni 5318 |
. . . 4
β’ ((Base Fn
V β§ π β V) β
(Baseβπ) β
V) |
5 | 1, 2, 4 | mp2an 426 |
. . 3
β’
(Baseβπ)
β V |
6 | | plusgslid 12573 |
. . . . 5
β’
(+g = Slot (+gβndx) β§
(+gβndx) β β) |
7 | 6 | slotex 12491 |
. . . 4
β’ (π β V β
(+gβπ)
β V) |
8 | 7 | elv 2743 |
. . 3
β’
(+gβπ) β V |
9 | | fveq2 5517 |
. . . . . . 7
β’ (π = πΊ β (Baseβπ) = (BaseβπΊ)) |
10 | | ismnddef.b |
. . . . . . 7
β’ π΅ = (BaseβπΊ) |
11 | 9, 10 | eqtr4di 2228 |
. . . . . 6
β’ (π = πΊ β (Baseβπ) = π΅) |
12 | 11 | eqeq2d 2189 |
. . . . 5
β’ (π = πΊ β (π = (Baseβπ) β π = π΅)) |
13 | | fveq2 5517 |
. . . . . . 7
β’ (π = πΊ β (+gβπ) = (+gβπΊ)) |
14 | | ismnddef.p |
. . . . . . 7
β’ + =
(+gβπΊ) |
15 | 13, 14 | eqtr4di 2228 |
. . . . . 6
β’ (π = πΊ β (+gβπ) = + ) |
16 | 15 | eqeq2d 2189 |
. . . . 5
β’ (π = πΊ β (π = (+gβπ) β π = + )) |
17 | 12, 16 | anbi12d 473 |
. . . 4
β’ (π = πΊ β ((π = (Baseβπ) β§ π = (+gβπ)) β (π = π΅ β§ π = + ))) |
18 | | simpl 109 |
. . . . 5
β’ ((π = π΅ β§ π = + ) β π = π΅) |
19 | | oveq 5883 |
. . . . . . . . 9
β’ (π = + β (πππ) = (π + π)) |
20 | 19 | eqeq1d 2186 |
. . . . . . . 8
β’ (π = + β ((πππ) = π β (π + π) = π)) |
21 | | oveq 5883 |
. . . . . . . . 9
β’ (π = + β (πππ) = (π + π)) |
22 | 21 | eqeq1d 2186 |
. . . . . . . 8
β’ (π = + β ((πππ) = π β (π + π) = π)) |
23 | 20, 22 | anbi12d 473 |
. . . . . . 7
β’ (π = + β (((πππ) = π β§ (πππ) = π) β ((π + π) = π β§ (π + π) = π))) |
24 | 23 | adantl 277 |
. . . . . 6
β’ ((π = π΅ β§ π = + ) β (((πππ) = π β§ (πππ) = π) β ((π + π) = π β§ (π + π) = π))) |
25 | 18, 24 | raleqbidv 2685 |
. . . . 5
β’ ((π = π΅ β§ π = + ) β (βπ β π ((πππ) = π β§ (πππ) = π) β βπ β π΅ ((π + π) = π β§ (π + π) = π))) |
26 | 18, 25 | rexeqbidv 2686 |
. . . 4
β’ ((π = π΅ β§ π = + ) β (βπ β π βπ β π ((πππ) = π β§ (πππ) = π) β βπ β π΅ βπ β π΅ ((π + π) = π β§ (π + π) = π))) |
27 | 17, 26 | biimtrdi 163 |
. . 3
β’ (π = πΊ β ((π = (Baseβπ) β§ π = (+gβπ)) β (βπ β π βπ β π ((πππ) = π β§ (πππ) = π) β βπ β π΅ βπ β π΅ ((π + π) = π β§ (π + π) = π)))) |
28 | 5, 8, 27 | sbc2iedv 3037 |
. 2
β’ (π = πΊ β ([(Baseβπ) / π][(+gβπ) / π]βπ β π βπ β π ((πππ) = π β§ (πππ) = π) β βπ β π΅ βπ β π΅ ((π + π) = π β§ (π + π) = π))) |
29 | | df-mnd 12823 |
. 2
β’ Mnd =
{π β Smgrp β£
[(Baseβπ) /
π][(+gβπ) / π]βπ β π βπ β π ((πππ) = π β§ (πππ) = π)} |
30 | 28, 29 | elrab2 2898 |
1
β’ (πΊ β Mnd β (πΊ β Smgrp β§ βπ β π΅ βπ β π΅ ((π + π) = π β§ (π + π) = π))) |