ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismnddef GIF version

Theorem ismnddef 12824
Description: The predicate "is a monoid", corresponding 1-to-1 to the definition. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 1-Feb-2020.)
Hypotheses
Ref Expression
ismnddef.b 𝐡 = (Baseβ€˜πΊ)
ismnddef.p + = (+gβ€˜πΊ)
Assertion
Ref Expression
ismnddef (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ βˆƒπ‘’ ∈ 𝐡 βˆ€π‘Ž ∈ 𝐡 ((𝑒 + π‘Ž) = π‘Ž ∧ (π‘Ž + 𝑒) = π‘Ž)))
Distinct variable groups:   𝐡,π‘Ž,𝑒   + ,π‘Ž,𝑒
Allowed substitution hints:   𝐺(𝑒,π‘Ž)

Proof of Theorem ismnddef
Dummy variables 𝑏 𝑔 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 12522 . . . 4 Base Fn V
2 vex 2742 . . . 4 𝑔 ∈ V
3 funfvex 5534 . . . . 5 ((Fun Base ∧ 𝑔 ∈ dom Base) β†’ (Baseβ€˜π‘”) ∈ V)
43funfni 5318 . . . 4 ((Base Fn V ∧ 𝑔 ∈ V) β†’ (Baseβ€˜π‘”) ∈ V)
51, 2, 4mp2an 426 . . 3 (Baseβ€˜π‘”) ∈ V
6 plusgslid 12573 . . . . 5 (+g = Slot (+gβ€˜ndx) ∧ (+gβ€˜ndx) ∈ β„•)
76slotex 12491 . . . 4 (𝑔 ∈ V β†’ (+gβ€˜π‘”) ∈ V)
87elv 2743 . . 3 (+gβ€˜π‘”) ∈ V
9 fveq2 5517 . . . . . . 7 (𝑔 = 𝐺 β†’ (Baseβ€˜π‘”) = (Baseβ€˜πΊ))
10 ismnddef.b . . . . . . 7 𝐡 = (Baseβ€˜πΊ)
119, 10eqtr4di 2228 . . . . . 6 (𝑔 = 𝐺 β†’ (Baseβ€˜π‘”) = 𝐡)
1211eqeq2d 2189 . . . . 5 (𝑔 = 𝐺 β†’ (𝑏 = (Baseβ€˜π‘”) ↔ 𝑏 = 𝐡))
13 fveq2 5517 . . . . . . 7 (𝑔 = 𝐺 β†’ (+gβ€˜π‘”) = (+gβ€˜πΊ))
14 ismnddef.p . . . . . . 7 + = (+gβ€˜πΊ)
1513, 14eqtr4di 2228 . . . . . 6 (𝑔 = 𝐺 β†’ (+gβ€˜π‘”) = + )
1615eqeq2d 2189 . . . . 5 (𝑔 = 𝐺 β†’ (𝑝 = (+gβ€˜π‘”) ↔ 𝑝 = + ))
1712, 16anbi12d 473 . . . 4 (𝑔 = 𝐺 β†’ ((𝑏 = (Baseβ€˜π‘”) ∧ 𝑝 = (+gβ€˜π‘”)) ↔ (𝑏 = 𝐡 ∧ 𝑝 = + )))
18 simpl 109 . . . . 5 ((𝑏 = 𝐡 ∧ 𝑝 = + ) β†’ 𝑏 = 𝐡)
19 oveq 5883 . . . . . . . . 9 (𝑝 = + β†’ (π‘’π‘π‘Ž) = (𝑒 + π‘Ž))
2019eqeq1d 2186 . . . . . . . 8 (𝑝 = + β†’ ((π‘’π‘π‘Ž) = π‘Ž ↔ (𝑒 + π‘Ž) = π‘Ž))
21 oveq 5883 . . . . . . . . 9 (𝑝 = + β†’ (π‘Žπ‘π‘’) = (π‘Ž + 𝑒))
2221eqeq1d 2186 . . . . . . . 8 (𝑝 = + β†’ ((π‘Žπ‘π‘’) = π‘Ž ↔ (π‘Ž + 𝑒) = π‘Ž))
2320, 22anbi12d 473 . . . . . . 7 (𝑝 = + β†’ (((π‘’π‘π‘Ž) = π‘Ž ∧ (π‘Žπ‘π‘’) = π‘Ž) ↔ ((𝑒 + π‘Ž) = π‘Ž ∧ (π‘Ž + 𝑒) = π‘Ž)))
2423adantl 277 . . . . . 6 ((𝑏 = 𝐡 ∧ 𝑝 = + ) β†’ (((π‘’π‘π‘Ž) = π‘Ž ∧ (π‘Žπ‘π‘’) = π‘Ž) ↔ ((𝑒 + π‘Ž) = π‘Ž ∧ (π‘Ž + 𝑒) = π‘Ž)))
2518, 24raleqbidv 2685 . . . . 5 ((𝑏 = 𝐡 ∧ 𝑝 = + ) β†’ (βˆ€π‘Ž ∈ 𝑏 ((π‘’π‘π‘Ž) = π‘Ž ∧ (π‘Žπ‘π‘’) = π‘Ž) ↔ βˆ€π‘Ž ∈ 𝐡 ((𝑒 + π‘Ž) = π‘Ž ∧ (π‘Ž + 𝑒) = π‘Ž)))
2618, 25rexeqbidv 2686 . . . 4 ((𝑏 = 𝐡 ∧ 𝑝 = + ) β†’ (βˆƒπ‘’ ∈ 𝑏 βˆ€π‘Ž ∈ 𝑏 ((π‘’π‘π‘Ž) = π‘Ž ∧ (π‘Žπ‘π‘’) = π‘Ž) ↔ βˆƒπ‘’ ∈ 𝐡 βˆ€π‘Ž ∈ 𝐡 ((𝑒 + π‘Ž) = π‘Ž ∧ (π‘Ž + 𝑒) = π‘Ž)))
2717, 26biimtrdi 163 . . 3 (𝑔 = 𝐺 β†’ ((𝑏 = (Baseβ€˜π‘”) ∧ 𝑝 = (+gβ€˜π‘”)) β†’ (βˆƒπ‘’ ∈ 𝑏 βˆ€π‘Ž ∈ 𝑏 ((π‘’π‘π‘Ž) = π‘Ž ∧ (π‘Žπ‘π‘’) = π‘Ž) ↔ βˆƒπ‘’ ∈ 𝐡 βˆ€π‘Ž ∈ 𝐡 ((𝑒 + π‘Ž) = π‘Ž ∧ (π‘Ž + 𝑒) = π‘Ž))))
285, 8, 27sbc2iedv 3037 . 2 (𝑔 = 𝐺 β†’ ([(Baseβ€˜π‘”) / 𝑏][(+gβ€˜π‘”) / 𝑝]βˆƒπ‘’ ∈ 𝑏 βˆ€π‘Ž ∈ 𝑏 ((π‘’π‘π‘Ž) = π‘Ž ∧ (π‘Žπ‘π‘’) = π‘Ž) ↔ βˆƒπ‘’ ∈ 𝐡 βˆ€π‘Ž ∈ 𝐡 ((𝑒 + π‘Ž) = π‘Ž ∧ (π‘Ž + 𝑒) = π‘Ž)))
29 df-mnd 12823 . 2 Mnd = {𝑔 ∈ Smgrp ∣ [(Baseβ€˜π‘”) / 𝑏][(+gβ€˜π‘”) / 𝑝]βˆƒπ‘’ ∈ 𝑏 βˆ€π‘Ž ∈ 𝑏 ((π‘’π‘π‘Ž) = π‘Ž ∧ (π‘Žπ‘π‘’) = π‘Ž)}
3028, 29elrab2 2898 1 (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ βˆƒπ‘’ ∈ 𝐡 βˆ€π‘Ž ∈ 𝐡 ((𝑒 + π‘Ž) = π‘Ž ∧ (π‘Ž + 𝑒) = π‘Ž)))
Colors of variables: wff set class
Syntax hints:   ∧ wa 104   ↔ wb 105   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  βˆƒwrex 2456  Vcvv 2739  [wsbc 2964   Fn wfn 5213  β€˜cfv 5218  (class class class)co 5877  Basecbs 12464  +gcplusg 12538  Smgrpcsgrp 12812  Mndcmnd 12822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5880  df-inn 8922  df-2 8980  df-ndx 12467  df-slot 12468  df-base 12470  df-plusg 12551  df-mnd 12823
This theorem is referenced by:  ismnd  12825  sgrpidmndm  12826  mndsgrp  12827  mnd1  12852
  Copyright terms: Public domain W3C validator