Step | Hyp | Ref
| Expression |
1 | | basfn 12473 |
. . . 4
⊢ Base Fn
V |
2 | | vex 2733 |
. . . 4
⊢ 𝑔 ∈ V |
3 | | funfvex 5513 |
. . . . 5
⊢ ((Fun
Base ∧ 𝑔 ∈ dom
Base) → (Base‘𝑔)
∈ V) |
4 | 3 | funfni 5298 |
. . . 4
⊢ ((Base Fn
V ∧ 𝑔 ∈ V) →
(Base‘𝑔) ∈
V) |
5 | 1, 2, 4 | mp2an 424 |
. . 3
⊢
(Base‘𝑔)
∈ V |
6 | | plusgslid 12513 |
. . . . 5
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) |
7 | 6 | slotex 12443 |
. . . 4
⊢ (𝑔 ∈ V →
(+g‘𝑔)
∈ V) |
8 | 7 | elv 2734 |
. . 3
⊢
(+g‘𝑔) ∈ V |
9 | | fveq2 5496 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) |
10 | | ismnddef.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐺) |
11 | 9, 10 | eqtr4di 2221 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
12 | 11 | eqeq2d 2182 |
. . . . 5
⊢ (𝑔 = 𝐺 → (𝑏 = (Base‘𝑔) ↔ 𝑏 = 𝐵)) |
13 | | fveq2 5496 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) |
14 | | ismnddef.p |
. . . . . . 7
⊢ + =
(+g‘𝐺) |
15 | 13, 14 | eqtr4di 2221 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
16 | 15 | eqeq2d 2182 |
. . . . 5
⊢ (𝑔 = 𝐺 → (𝑝 = (+g‘𝑔) ↔ 𝑝 = + )) |
17 | 12, 16 | anbi12d 470 |
. . . 4
⊢ (𝑔 = 𝐺 → ((𝑏 = (Base‘𝑔) ∧ 𝑝 = (+g‘𝑔)) ↔ (𝑏 = 𝐵 ∧ 𝑝 = + ))) |
18 | | simpl 108 |
. . . . 5
⊢ ((𝑏 = 𝐵 ∧ 𝑝 = + ) → 𝑏 = 𝐵) |
19 | | oveq 5859 |
. . . . . . . . 9
⊢ (𝑝 = + → (𝑒𝑝𝑎) = (𝑒 + 𝑎)) |
20 | 19 | eqeq1d 2179 |
. . . . . . . 8
⊢ (𝑝 = + → ((𝑒𝑝𝑎) = 𝑎 ↔ (𝑒 + 𝑎) = 𝑎)) |
21 | | oveq 5859 |
. . . . . . . . 9
⊢ (𝑝 = + → (𝑎𝑝𝑒) = (𝑎 + 𝑒)) |
22 | 21 | eqeq1d 2179 |
. . . . . . . 8
⊢ (𝑝 = + → ((𝑎𝑝𝑒) = 𝑎 ↔ (𝑎 + 𝑒) = 𝑎)) |
23 | 20, 22 | anbi12d 470 |
. . . . . . 7
⊢ (𝑝 = + → (((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))) |
24 | 23 | adantl 275 |
. . . . . 6
⊢ ((𝑏 = 𝐵 ∧ 𝑝 = + ) → (((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))) |
25 | 18, 24 | raleqbidv 2677 |
. . . . 5
⊢ ((𝑏 = 𝐵 ∧ 𝑝 = + ) → (∀𝑎 ∈ 𝑏 ((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))) |
26 | 18, 25 | rexeqbidv 2678 |
. . . 4
⊢ ((𝑏 = 𝐵 ∧ 𝑝 = + ) → (∃𝑒 ∈ 𝑏 ∀𝑎 ∈ 𝑏 ((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))) |
27 | 17, 26 | syl6bi 162 |
. . 3
⊢ (𝑔 = 𝐺 → ((𝑏 = (Base‘𝑔) ∧ 𝑝 = (+g‘𝑔)) → (∃𝑒 ∈ 𝑏 ∀𝑎 ∈ 𝑏 ((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))) |
28 | 5, 8, 27 | sbc2iedv 3027 |
. 2
⊢ (𝑔 = 𝐺 → ([(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑝]∃𝑒 ∈ 𝑏 ∀𝑎 ∈ 𝑏 ((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))) |
29 | | df-mnd 12653 |
. 2
⊢ Mnd =
{𝑔 ∈ Smgrp ∣
[(Base‘𝑔) /
𝑏][(+g‘𝑔) / 𝑝]∃𝑒 ∈ 𝑏 ∀𝑎 ∈ 𝑏 ((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎)} |
30 | 28, 29 | elrab2 2889 |
1
⊢ (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))) |