ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismnddef GIF version

Theorem ismnddef 13446
Description: The predicate "is a monoid", corresponding 1-to-1 to the definition. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 1-Feb-2020.)
Hypotheses
Ref Expression
ismnddef.b 𝐵 = (Base‘𝐺)
ismnddef.p + = (+g𝐺)
Assertion
Ref Expression
ismnddef (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
Distinct variable groups:   𝐵,𝑎,𝑒   + ,𝑎,𝑒
Allowed substitution hints:   𝐺(𝑒,𝑎)

Proof of Theorem ismnddef
Dummy variables 𝑏 𝑔 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 13086 . . . 4 Base Fn V
2 vex 2802 . . . 4 𝑔 ∈ V
3 funfvex 5643 . . . . 5 ((Fun Base ∧ 𝑔 ∈ dom Base) → (Base‘𝑔) ∈ V)
43funfni 5422 . . . 4 ((Base Fn V ∧ 𝑔 ∈ V) → (Base‘𝑔) ∈ V)
51, 2, 4mp2an 426 . . 3 (Base‘𝑔) ∈ V
6 plusgslid 13140 . . . . 5 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
76slotex 13054 . . . 4 (𝑔 ∈ V → (+g𝑔) ∈ V)
87elv 2803 . . 3 (+g𝑔) ∈ V
9 fveq2 5626 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
10 ismnddef.b . . . . . . 7 𝐵 = (Base‘𝐺)
119, 10eqtr4di 2280 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
1211eqeq2d 2241 . . . . 5 (𝑔 = 𝐺 → (𝑏 = (Base‘𝑔) ↔ 𝑏 = 𝐵))
13 fveq2 5626 . . . . . . 7 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
14 ismnddef.p . . . . . . 7 + = (+g𝐺)
1513, 14eqtr4di 2280 . . . . . 6 (𝑔 = 𝐺 → (+g𝑔) = + )
1615eqeq2d 2241 . . . . 5 (𝑔 = 𝐺 → (𝑝 = (+g𝑔) ↔ 𝑝 = + ))
1712, 16anbi12d 473 . . . 4 (𝑔 = 𝐺 → ((𝑏 = (Base‘𝑔) ∧ 𝑝 = (+g𝑔)) ↔ (𝑏 = 𝐵𝑝 = + )))
18 simpl 109 . . . . 5 ((𝑏 = 𝐵𝑝 = + ) → 𝑏 = 𝐵)
19 oveq 6006 . . . . . . . . 9 (𝑝 = + → (𝑒𝑝𝑎) = (𝑒 + 𝑎))
2019eqeq1d 2238 . . . . . . . 8 (𝑝 = + → ((𝑒𝑝𝑎) = 𝑎 ↔ (𝑒 + 𝑎) = 𝑎))
21 oveq 6006 . . . . . . . . 9 (𝑝 = + → (𝑎𝑝𝑒) = (𝑎 + 𝑒))
2221eqeq1d 2238 . . . . . . . 8 (𝑝 = + → ((𝑎𝑝𝑒) = 𝑎 ↔ (𝑎 + 𝑒) = 𝑎))
2320, 22anbi12d 473 . . . . . . 7 (𝑝 = + → (((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
2423adantl 277 . . . . . 6 ((𝑏 = 𝐵𝑝 = + ) → (((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
2518, 24raleqbidv 2744 . . . . 5 ((𝑏 = 𝐵𝑝 = + ) → (∀𝑎𝑏 ((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ∀𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
2618, 25rexeqbidv 2745 . . . 4 ((𝑏 = 𝐵𝑝 = + ) → (∃𝑒𝑏𝑎𝑏 ((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
2717, 26biimtrdi 163 . . 3 (𝑔 = 𝐺 → ((𝑏 = (Base‘𝑔) ∧ 𝑝 = (+g𝑔)) → (∃𝑒𝑏𝑎𝑏 ((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))))
285, 8, 27sbc2iedv 3101 . 2 (𝑔 = 𝐺 → ([(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑒𝑏𝑎𝑏 ((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
29 df-mnd 13445 . 2 Mnd = {𝑔 ∈ Smgrp ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑒𝑏𝑎𝑏 ((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎)}
3028, 29elrab2 2962 1 (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  wrex 2509  Vcvv 2799  [wsbc 3028   Fn wfn 5312  cfv 5317  (class class class)co 6000  Basecbs 13027  +gcplusg 13105  Smgrpcsgrp 13429  Mndcmnd 13444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-ov 6003  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-mnd 13445
This theorem is referenced by:  ismnd  13447  sgrpidmndm  13448  mndsgrp  13449  mnd1  13483
  Copyright terms: Public domain W3C validator