| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimdvv | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Jul-2004.) |
| Ref | Expression |
|---|---|
| rexlimdvv.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| rexlimdvv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdvv.1 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒))) | |
| 2 | 1 | expdimp 259 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝐵 → (𝜓 → 𝜒))) |
| 3 | 2 | rexlimdv 2627 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
| 4 | 3 | rexlimdva 2628 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2180 ∃wrex 2489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-4 1536 ax-17 1552 ax-ial 1560 ax-i5r 1561 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-ral 2493 df-rex 2494 |
| This theorem is referenced by: rexlimdvva 2636 f1oiso2 5924 rex2dom 6941 xpdom2 6958 genpcdl 7674 genpcuu 7675 distrlem1prl 7737 distrlem1pru 7738 distrlem5prl 7741 distrlem5pru 7742 recexprlemss1l 7790 recexprlemss1u 7791 qaddcl 9798 qmulcl 9800 summodc 11860 dvdsgcd 12499 gcddiv 12506 pceu 12784 pcqcl 12795 txcnp 14910 blssps 15066 blss 15067 tgqioo 15194 upgredg2vtx 15911 |
| Copyright terms: Public domain | W3C validator |