| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rexlimdvv | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Jul-2004.) | 
| Ref | Expression | 
|---|---|
| rexlimdvv.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒))) | 
| Ref | Expression | 
|---|---|
| rexlimdvv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rexlimdvv.1 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒))) | |
| 2 | 1 | expdimp 259 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝐵 → (𝜓 → 𝜒))) | 
| 3 | 2 | rexlimdv 2613 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) | 
| 4 | 3 | rexlimdva 2614 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ∃wrex 2476 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 df-rex 2481 | 
| This theorem is referenced by: rexlimdvva 2622 f1oiso2 5874 xpdom2 6890 genpcdl 7586 genpcuu 7587 distrlem1prl 7649 distrlem1pru 7650 distrlem5prl 7653 distrlem5pru 7654 recexprlemss1l 7702 recexprlemss1u 7703 qaddcl 9709 qmulcl 9711 summodc 11548 dvdsgcd 12179 gcddiv 12186 pceu 12464 pcqcl 12475 txcnp 14507 blssps 14663 blss 14664 tgqioo 14791 | 
| Copyright terms: Public domain | W3C validator |