ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdvv GIF version

Theorem rexlimdvv 2621
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Jul-2004.)
Hypothesis
Ref Expression
rexlimdvv.1 (𝜑 → ((𝑥𝐴𝑦𝐵) → (𝜓𝜒)))
Assertion
Ref Expression
rexlimdvv (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓𝜒))
Distinct variable groups:   𝑥,𝑦,𝜑   𝜒,𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem rexlimdvv
StepHypRef Expression
1 rexlimdvv.1 . . . 4 (𝜑 → ((𝑥𝐴𝑦𝐵) → (𝜓𝜒)))
21expdimp 259 . . 3 ((𝜑𝑥𝐴) → (𝑦𝐵 → (𝜓𝜒)))
32rexlimdv 2613 . 2 ((𝜑𝑥𝐴) → (∃𝑦𝐵 𝜓𝜒))
43rexlimdva 2614 1 (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167  wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-ral 2480  df-rex 2481
This theorem is referenced by:  rexlimdvva  2622  f1oiso2  5874  xpdom2  6890  genpcdl  7586  genpcuu  7587  distrlem1prl  7649  distrlem1pru  7650  distrlem5prl  7653  distrlem5pru  7654  recexprlemss1l  7702  recexprlemss1u  7703  qaddcl  9709  qmulcl  9711  summodc  11548  dvdsgcd  12179  gcddiv  12186  pceu  12464  pcqcl  12475  txcnp  14507  blssps  14663  blss  14664  tgqioo  14791
  Copyright terms: Public domain W3C validator