ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdvv GIF version

Theorem rexlimdvv 2635
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Jul-2004.)
Hypothesis
Ref Expression
rexlimdvv.1 (𝜑 → ((𝑥𝐴𝑦𝐵) → (𝜓𝜒)))
Assertion
Ref Expression
rexlimdvv (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓𝜒))
Distinct variable groups:   𝑥,𝑦,𝜑   𝜒,𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem rexlimdvv
StepHypRef Expression
1 rexlimdvv.1 . . . 4 (𝜑 → ((𝑥𝐴𝑦𝐵) → (𝜓𝜒)))
21expdimp 259 . . 3 ((𝜑𝑥𝐴) → (𝑦𝐵 → (𝜓𝜒)))
32rexlimdv 2627 . 2 ((𝜑𝑥𝐴) → (∃𝑦𝐵 𝜓𝜒))
43rexlimdva 2628 1 (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2180  wrex 2489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1473  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-4 1536  ax-17 1552  ax-ial 1560  ax-i5r 1561
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-ral 2493  df-rex 2494
This theorem is referenced by:  rexlimdvva  2636  f1oiso2  5924  rex2dom  6941  xpdom2  6958  genpcdl  7674  genpcuu  7675  distrlem1prl  7737  distrlem1pru  7738  distrlem5prl  7741  distrlem5pru  7742  recexprlemss1l  7790  recexprlemss1u  7791  qaddcl  9798  qmulcl  9800  summodc  11860  dvdsgcd  12499  gcddiv  12506  pceu  12784  pcqcl  12795  txcnp  14910  blssps  15066  blss  15067  tgqioo  15194  upgredg2vtx  15911
  Copyright terms: Public domain W3C validator