Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexlimdvv | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Jul-2004.) |
Ref | Expression |
---|---|
rexlimdvv.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
rexlimdvv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdvv.1 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒))) | |
2 | 1 | expdimp 259 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝐵 → (𝜓 → 𝜒))) |
3 | 2 | rexlimdv 2591 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
4 | 3 | rexlimdva 2592 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2146 ∃wrex 2454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 ax-17 1524 ax-ial 1532 ax-i5r 1533 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-ral 2458 df-rex 2459 |
This theorem is referenced by: rexlimdvva 2600 f1oiso2 5818 xpdom2 6821 genpcdl 7493 genpcuu 7494 distrlem1prl 7556 distrlem1pru 7557 distrlem5prl 7560 distrlem5pru 7561 recexprlemss1l 7609 recexprlemss1u 7610 qaddcl 9606 qmulcl 9608 summodc 11357 dvdsgcd 11978 gcddiv 11985 pceu 12260 pcqcl 12271 txcnp 13322 blssps 13478 blss 13479 tgqioo 13598 |
Copyright terms: Public domain | W3C validator |