| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimdvv | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Jul-2004.) |
| Ref | Expression |
|---|---|
| rexlimdvv.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| rexlimdvv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdvv.1 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒))) | |
| 2 | 1 | expdimp 259 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝐵 → (𝜓 → 𝜒))) |
| 3 | 2 | rexlimdv 2647 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
| 4 | 3 | rexlimdva 2648 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: rexlimdvva 2656 f1oiso2 5957 rex2dom 6979 xpdom2 6998 genpcdl 7714 genpcuu 7715 distrlem1prl 7777 distrlem1pru 7778 distrlem5prl 7781 distrlem5pru 7782 recexprlemss1l 7830 recexprlemss1u 7831 qaddcl 9838 qmulcl 9840 summodc 11902 dvdsgcd 12541 gcddiv 12548 pceu 12826 pcqcl 12837 txcnp 14953 blssps 15109 blss 15110 tgqioo 15237 upgredg2vtx 15954 |
| Copyright terms: Public domain | W3C validator |