ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riinerm GIF version

Theorem riinerm 6574
Description: The relative intersection of a family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
riinerm ((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 𝑅 Er 𝐵) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑦,𝐴
Allowed substitution hints:   𝐵(𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem riinerm
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 iinerm 6573 . 2 ((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 𝑅 Er 𝐵) → 𝑥𝐴 𝑅 Er 𝐵)
2 eleq1 2229 . . . . . 6 (𝑥 = 𝑎 → (𝑥𝐴𝑎𝐴))
32cbvexv 1906 . . . . 5 (∃𝑥 𝑥𝐴 ↔ ∃𝑎 𝑎𝐴)
4 eleq1 2229 . . . . . 6 (𝑎 = 𝑦 → (𝑎𝐴𝑦𝐴))
54cbvexv 1906 . . . . 5 (∃𝑎 𝑎𝐴 ↔ ∃𝑦 𝑦𝐴)
63, 5bitri 183 . . . 4 (∃𝑥 𝑥𝐴 ↔ ∃𝑦 𝑦𝐴)
7 erssxp 6524 . . . . . . 7 (𝑅 Er 𝐵𝑅 ⊆ (𝐵 × 𝐵))
87ralimi 2529 . . . . . 6 (∀𝑥𝐴 𝑅 Er 𝐵 → ∀𝑥𝐴 𝑅 ⊆ (𝐵 × 𝐵))
9 riinm 3938 . . . . . 6 ((∀𝑥𝐴 𝑅 ⊆ (𝐵 × 𝐵) ∧ ∃𝑥 𝑥𝐴) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = 𝑥𝐴 𝑅)
108, 9sylan 281 . . . . 5 ((∀𝑥𝐴 𝑅 Er 𝐵 ∧ ∃𝑥 𝑥𝐴) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = 𝑥𝐴 𝑅)
11 ereq1 6508 . . . . 5 (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = 𝑥𝐴 𝑅 → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 𝑥𝐴 𝑅 Er 𝐵))
1210, 11syl 14 . . . 4 ((∀𝑥𝐴 𝑅 Er 𝐵 ∧ ∃𝑥 𝑥𝐴) → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 𝑥𝐴 𝑅 Er 𝐵))
136, 12sylan2br 286 . . 3 ((∀𝑥𝐴 𝑅 Er 𝐵 ∧ ∃𝑦 𝑦𝐴) → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 𝑥𝐴 𝑅 Er 𝐵))
1413ancoms 266 . 2 ((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 𝑅 Er 𝐵) → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 𝑥𝐴 𝑅 Er 𝐵))
151, 14mpbird 166 1 ((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 𝑅 Er 𝐵) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wex 1480  wcel 2136  wral 2444  cin 3115  wss 3116   ciin 3867   × cxp 4602   Er wer 6498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-iin 3869  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-er 6501
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator