ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riinerm GIF version

Theorem riinerm 6697
Description: The relative intersection of a family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
riinerm ((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 𝑅 Er 𝐵) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑦,𝐴
Allowed substitution hints:   𝐵(𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem riinerm
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 iinerm 6696 . 2 ((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 𝑅 Er 𝐵) → 𝑥𝐴 𝑅 Er 𝐵)
2 eleq1 2268 . . . . . 6 (𝑥 = 𝑎 → (𝑥𝐴𝑎𝐴))
32cbvexv 1942 . . . . 5 (∃𝑥 𝑥𝐴 ↔ ∃𝑎 𝑎𝐴)
4 eleq1 2268 . . . . . 6 (𝑎 = 𝑦 → (𝑎𝐴𝑦𝐴))
54cbvexv 1942 . . . . 5 (∃𝑎 𝑎𝐴 ↔ ∃𝑦 𝑦𝐴)
63, 5bitri 184 . . . 4 (∃𝑥 𝑥𝐴 ↔ ∃𝑦 𝑦𝐴)
7 erssxp 6645 . . . . . . 7 (𝑅 Er 𝐵𝑅 ⊆ (𝐵 × 𝐵))
87ralimi 2569 . . . . . 6 (∀𝑥𝐴 𝑅 Er 𝐵 → ∀𝑥𝐴 𝑅 ⊆ (𝐵 × 𝐵))
9 riinm 4000 . . . . . 6 ((∀𝑥𝐴 𝑅 ⊆ (𝐵 × 𝐵) ∧ ∃𝑥 𝑥𝐴) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = 𝑥𝐴 𝑅)
108, 9sylan 283 . . . . 5 ((∀𝑥𝐴 𝑅 Er 𝐵 ∧ ∃𝑥 𝑥𝐴) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = 𝑥𝐴 𝑅)
11 ereq1 6629 . . . . 5 (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = 𝑥𝐴 𝑅 → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 𝑥𝐴 𝑅 Er 𝐵))
1210, 11syl 14 . . . 4 ((∀𝑥𝐴 𝑅 Er 𝐵 ∧ ∃𝑥 𝑥𝐴) → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 𝑥𝐴 𝑅 Er 𝐵))
136, 12sylan2br 288 . . 3 ((∀𝑥𝐴 𝑅 Er 𝐵 ∧ ∃𝑦 𝑦𝐴) → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 𝑥𝐴 𝑅 Er 𝐵))
1413ancoms 268 . 2 ((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 𝑅 Er 𝐵) → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 𝑥𝐴 𝑅 Er 𝐵))
151, 14mpbird 167 1 ((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 𝑅 Er 𝐵) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wex 1515  wcel 2176  wral 2484  cin 3165  wss 3166   ciin 3928   × cxp 4674   Er wer 6619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-iin 3930  df-br 4046  df-opab 4107  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-er 6622
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator