ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riinerm GIF version

Theorem riinerm 6405
Description: The relative intersection of a family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
riinerm ((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 𝑅 Er 𝐵) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑦,𝐴
Allowed substitution hints:   𝐵(𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem riinerm
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 iinerm 6404 . 2 ((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 𝑅 Er 𝐵) → 𝑥𝐴 𝑅 Er 𝐵)
2 eleq1 2157 . . . . . 6 (𝑥 = 𝑎 → (𝑥𝐴𝑎𝐴))
32cbvexv 1850 . . . . 5 (∃𝑥 𝑥𝐴 ↔ ∃𝑎 𝑎𝐴)
4 eleq1 2157 . . . . . 6 (𝑎 = 𝑦 → (𝑎𝐴𝑦𝐴))
54cbvexv 1850 . . . . 5 (∃𝑎 𝑎𝐴 ↔ ∃𝑦 𝑦𝐴)
63, 5bitri 183 . . . 4 (∃𝑥 𝑥𝐴 ↔ ∃𝑦 𝑦𝐴)
7 erssxp 6355 . . . . . . 7 (𝑅 Er 𝐵𝑅 ⊆ (𝐵 × 𝐵))
87ralimi 2449 . . . . . 6 (∀𝑥𝐴 𝑅 Er 𝐵 → ∀𝑥𝐴 𝑅 ⊆ (𝐵 × 𝐵))
9 riinm 3824 . . . . . 6 ((∀𝑥𝐴 𝑅 ⊆ (𝐵 × 𝐵) ∧ ∃𝑥 𝑥𝐴) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = 𝑥𝐴 𝑅)
108, 9sylan 278 . . . . 5 ((∀𝑥𝐴 𝑅 Er 𝐵 ∧ ∃𝑥 𝑥𝐴) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = 𝑥𝐴 𝑅)
11 ereq1 6339 . . . . 5 (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = 𝑥𝐴 𝑅 → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 𝑥𝐴 𝑅 Er 𝐵))
1210, 11syl 14 . . . 4 ((∀𝑥𝐴 𝑅 Er 𝐵 ∧ ∃𝑥 𝑥𝐴) → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 𝑥𝐴 𝑅 Er 𝐵))
136, 12sylan2br 283 . . 3 ((∀𝑥𝐴 𝑅 Er 𝐵 ∧ ∃𝑦 𝑦𝐴) → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 𝑥𝐴 𝑅 Er 𝐵))
1413ancoms 265 . 2 ((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 𝑅 Er 𝐵) → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 𝑥𝐴 𝑅 Er 𝐵))
151, 14mpbird 166 1 ((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 𝑅 Er 𝐵) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1296  wex 1433  wcel 1445  wral 2370  cin 3012  wss 3013   ciin 3753   × cxp 4465   Er wer 6329
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-iin 3755  df-br 3868  df-opab 3922  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-er 6332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator