ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riinerm GIF version

Theorem riinerm 6664
Description: The relative intersection of a family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
riinerm ((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 𝑅 Er 𝐵) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑦,𝐴
Allowed substitution hints:   𝐵(𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem riinerm
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 iinerm 6663 . 2 ((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 𝑅 Er 𝐵) → 𝑥𝐴 𝑅 Er 𝐵)
2 eleq1 2256 . . . . . 6 (𝑥 = 𝑎 → (𝑥𝐴𝑎𝐴))
32cbvexv 1930 . . . . 5 (∃𝑥 𝑥𝐴 ↔ ∃𝑎 𝑎𝐴)
4 eleq1 2256 . . . . . 6 (𝑎 = 𝑦 → (𝑎𝐴𝑦𝐴))
54cbvexv 1930 . . . . 5 (∃𝑎 𝑎𝐴 ↔ ∃𝑦 𝑦𝐴)
63, 5bitri 184 . . . 4 (∃𝑥 𝑥𝐴 ↔ ∃𝑦 𝑦𝐴)
7 erssxp 6612 . . . . . . 7 (𝑅 Er 𝐵𝑅 ⊆ (𝐵 × 𝐵))
87ralimi 2557 . . . . . 6 (∀𝑥𝐴 𝑅 Er 𝐵 → ∀𝑥𝐴 𝑅 ⊆ (𝐵 × 𝐵))
9 riinm 3986 . . . . . 6 ((∀𝑥𝐴 𝑅 ⊆ (𝐵 × 𝐵) ∧ ∃𝑥 𝑥𝐴) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = 𝑥𝐴 𝑅)
108, 9sylan 283 . . . . 5 ((∀𝑥𝐴 𝑅 Er 𝐵 ∧ ∃𝑥 𝑥𝐴) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = 𝑥𝐴 𝑅)
11 ereq1 6596 . . . . 5 (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = 𝑥𝐴 𝑅 → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 𝑥𝐴 𝑅 Er 𝐵))
1210, 11syl 14 . . . 4 ((∀𝑥𝐴 𝑅 Er 𝐵 ∧ ∃𝑥 𝑥𝐴) → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 𝑥𝐴 𝑅 Er 𝐵))
136, 12sylan2br 288 . . 3 ((∀𝑥𝐴 𝑅 Er 𝐵 ∧ ∃𝑦 𝑦𝐴) → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 𝑥𝐴 𝑅 Er 𝐵))
1413ancoms 268 . 2 ((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 𝑅 Er 𝐵) → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 𝑥𝐴 𝑅 Er 𝐵))
151, 14mpbird 167 1 ((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 𝑅 Er 𝐵) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2164  wral 2472  cin 3153  wss 3154   ciin 3914   × cxp 4658   Er wer 6586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-iin 3916  df-br 4031  df-opab 4092  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-er 6589
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator