![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > riinerm | GIF version |
Description: The relative intersection of a family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
riinerm | ⊢ ((∃𝑦 𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑅 Er 𝐵) → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iinerm 6607 | . 2 ⊢ ((∃𝑦 𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑅 Er 𝐵) → ∩ 𝑥 ∈ 𝐴 𝑅 Er 𝐵) | |
2 | eleq1 2240 | . . . . . 6 ⊢ (𝑥 = 𝑎 → (𝑥 ∈ 𝐴 ↔ 𝑎 ∈ 𝐴)) | |
3 | 2 | cbvexv 1918 | . . . . 5 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑎 𝑎 ∈ 𝐴) |
4 | eleq1 2240 | . . . . . 6 ⊢ (𝑎 = 𝑦 → (𝑎 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
5 | 4 | cbvexv 1918 | . . . . 5 ⊢ (∃𝑎 𝑎 ∈ 𝐴 ↔ ∃𝑦 𝑦 ∈ 𝐴) |
6 | 3, 5 | bitri 184 | . . . 4 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑦 𝑦 ∈ 𝐴) |
7 | erssxp 6558 | . . . . . . 7 ⊢ (𝑅 Er 𝐵 → 𝑅 ⊆ (𝐵 × 𝐵)) | |
8 | 7 | ralimi 2540 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 → ∀𝑥 ∈ 𝐴 𝑅 ⊆ (𝐵 × 𝐵)) |
9 | riinm 3960 | . . . . . 6 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 ⊆ (𝐵 × 𝐵) ∧ ∃𝑥 𝑥 ∈ 𝐴) → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) = ∩ 𝑥 ∈ 𝐴 𝑅) | |
10 | 8, 9 | sylan 283 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ ∃𝑥 𝑥 ∈ 𝐴) → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) = ∩ 𝑥 ∈ 𝐴 𝑅) |
11 | ereq1 6542 | . . . . 5 ⊢ (((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) = ∩ 𝑥 ∈ 𝐴 𝑅 → (((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵 ↔ ∩ 𝑥 ∈ 𝐴 𝑅 Er 𝐵)) | |
12 | 10, 11 | syl 14 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ ∃𝑥 𝑥 ∈ 𝐴) → (((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵 ↔ ∩ 𝑥 ∈ 𝐴 𝑅 Er 𝐵)) |
13 | 6, 12 | sylan2br 288 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ ∃𝑦 𝑦 ∈ 𝐴) → (((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵 ↔ ∩ 𝑥 ∈ 𝐴 𝑅 Er 𝐵)) |
14 | 13 | ancoms 268 | . 2 ⊢ ((∃𝑦 𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑅 Er 𝐵) → (((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵 ↔ ∩ 𝑥 ∈ 𝐴 𝑅 Er 𝐵)) |
15 | 1, 14 | mpbird 167 | 1 ⊢ ((∃𝑦 𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑅 Er 𝐵) → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∃wex 1492 ∈ wcel 2148 ∀wral 2455 ∩ cin 3129 ⊆ wss 3130 ∩ ciin 3888 × cxp 4625 Er wer 6532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-iin 3890 df-br 4005 df-opab 4066 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-er 6535 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |