ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpregt0 GIF version

Theorem rpregt0 9796
Description: A positive real is a positive real number. (Contributed by NM, 11-Nov-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
rpregt0 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴))

Proof of Theorem rpregt0
StepHypRef Expression
1 elrp 9784 . 2 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
21biimpi 120 1 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2177   class class class wbr 4047  cr 7931  0cc0 7932   < clt 8114  +crp 9782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rab 2494  df-v 2775  df-un 3171  df-sn 3640  df-pr 3641  df-op 3643  df-br 4048  df-rp 9783
This theorem is referenced by:  rpne0  9798  divlt1lt  9853  divle1le  9854  ledivge1le  9855  nnledivrp  9895  expnlbnd  10816  isprm6  12513
  Copyright terms: Public domain W3C validator